PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Udarowe właściwości uziemień ochrony odgromowej obiektów budowlanych i elektroenergetycznych

Autorzy
Identyfikatory
Warianty tytułu
EN
Surge properties of earth termination systems for lightning protection of structures and power transmission lines
Języki publikacji
PL
Abstrakty
PL
Praca dotyczy metod obliczania udarowych parametrów uziemień ochrony odgromowej obiektów budowlanych i urządzeń elektroenergetycznych. Dokonano w niej analizy zjawisk decydujących o udarowej rezystancji oraz impedancji uziemienia uziomów skupionych oraz uziomów rozległych. Parametry te są niezbędne do określania rezystancji i impedancji udarowej uziemienia, uziemieniowych spadków napięcia oraz przepięć występujących podczas przewodzenia prądu piorunowego. Podkreślono rolę i wpływ wyładowań elektrycznych w gruncie na udarowe parametry uziomów. Opisano metodykę badań udarowych gruntów i uziomów. Przedstawiono wyniki wykonanych przez autora badań eksperymentalnych oraz dokonano ich analizy. Opracowano nowy model matematyczny opisujący dynamiczną udarową konduktancję gruntu oraz dokonano numerycznej identyfikacji jego parametrów. Przeprowadzono też eksperymenty numeryczne z wykorzystaniem opracowanego modelu udarowej konduktancji, zaimplementowanego do programu obliczeniowego EMTP/ATP. Przedstawiono także metodykę uproszczonych obliczeń udarowej rezystancji uziemienia, przydatną do wstępnej analizy zagrożenia przepięciowego instalacji oraz urządzeń, a także do efektywnego doboru środków ochrony odgromowej obiektów budowlanych i elektroenergetycznych.
EN
The work addresses methods of specific transient parameter calculations of earthing systems for lightning protection of structures and power transmission lines. An overview of the phenomena that influence the surge resistance of concentrated earthing electrodes and transient impedance of longearthing electrodes when dissipating lightning currents into different kinds of soil are discussed thoroughly. Transient impedance or surge resistance of earth termination systems is a fundamental parameter for the assessment of ground potential rises and lightning overvoltages in the case of a direct strike to a structure and/or to overhead transmission lines. It is significantly different from the steady--state earthing electrode parameters which are commonly used in the design of earth termination systems for lightning protection' purposes. Special attention is paid to the role of electrical discharges in the earth during the lightning current flow and their influence on the surge parameters of earthing electrodes. The methodology of experimental surge tests of soil and earthing electrodes in the laboratory are described. The test results of surge experimental investigations performed by the author are analyzed with respect to the influence of surge current parameters and soil type with different values of resistivity. The exemplary plots of voltage-current characteristics for different types of soil are illustrated both for an analog and digital measurement set up. Based on the results of experimental tests the values of the critical voltage gradient necessary for the soil ionization process initiation for different soil types were calculated based on two different methods. The new method for the assessment of the critical gradient when the real resistance of the electrical discharge zone in the soil is taken into account is evaluated. Based on the experimental voltage-current surge characteristics of sandy and clayed soil a new mathematical model of soil dynamic surge conductance is proposed, which was satisfactorily represents the full loop shape in characteristic voltage-current plots. The numerical experiments were performed implementing the proposed model to the ATP version of the Electromagnetic Transient Program - EMTP. A simplified method for the calculation of surge resistance of earthing electrodes is also proposed. It might be useful for engineering calculations of the efficiency of earth termination systems when lightning hazard and lightning overvoltages have to be considered in the process of lightning protection design and management.
Rocznik
Tom
Strony
3--95
Opis fizyczny
Bibliogr. 136 poz., rys., tab., wykr.
Twórcy
autor
  • Instytut Wielkich Mocy i Wysokich Napięć, Wydział Elektryczny, Politechnika Warszawska
Bibliografia
  • [1] Altafim R.A.C., Leite D.M., Kameyama F.H., Kimura M.Y.S.: Earthing Electrodes Associations for Impulse Currents. 20th Int. Conf. on Lightning Protection (ICLP), Interlaken, September 1990. Paper 3.12 P.
  • [2] Amoruso V., Lattarulo F., Geri A., Veca G.M.: Lightning Indirect-Stroke Surge Voltages on Concentrated Groundings. CIGRE Symposium, Lausanne 1993, Paper 300-06.
  • [3] Anderson R.B., Eriksson A.J.: Lightning Parameters for Engineering Application. Electra No 69, 1980.
  • [4] Anderson J.G. et al.: A Raport Prepared by the Working Group on Lightning Performance of Substations. IEEE Trans. on PAS, vol. PAS-4, No 2, April 1989.
  • [5] Annienkow W.Z.: Rasczot impulsnogo soprotiwlenija protazennych zaziemlitieli w plocho prowodiaszczych gruntach. Elektriczestwo, No 11, 1974.
  • [6] Annienkow W.Z.: Mietod rasczota impulsnogo soprotiwlenija poluszczarowogo zaziemlitiela. Elektriczestwo, No 2, 1988.
  • [7] Babikow M.A., Komarow N.S.: Primienienije differencialnych vrawnienii dlinnych linii k rasczetu protazennych zaziemlitielej. Elektriczestwo, No 5, 1949.
  • [8] Bellaschi P.L.: Impulse and 60-Cycle Characteristics of Driven Grounds. AIEE Trans., 1941, vol. 60, s. 123-128.
  • [9] Bellaschi B.R., Armington R.E.: Impulse and 60-Cycle Characteristics of Driven Grounds-III. Effect of Lead in Ground Insulation. AIEE Trans., vol. 62, 1943.
  • [10] Bellaschi P.L., Armington R.E., Snowden A.E.: Impulse and 60 Cycle Characteristics of Driven Grounds-II. AIEE Trans., 1942, vol. 61, s. 349-363.
  • [11] Berger K.: Das Verhalten von Erdungen unter hohen Stoβströmen. SEV Bull., No 8, 1946.
  • [12] Berger K.: Methoden und Resultate der Blitzforschung auf den Monte San Salvatore in den Jahren 1963-1971. Bull. SEV 63 (1972), nr 24.
  • [13] Bernet D.: Dimensionierung von Erdungsanlagen für den Blitzschutz. Energietechnik, No 8, 1971.
  • [14] Bouquegneau C., Jacquet B.: How to Improve the Lightning Protection by Reducing the Ground Impedance. 17th Int. Conf. on Lightning Protection (ICLP), Hague, September 1983, Paper 2.3.
  • [15] Bourg S., Secape, Debu T.: Deep Earth Electrodes in Highly Resistive Ground: Frequency Behaviour. Symp. Record of 1995 Int. Symp. on Electromagnetic Compatibility, Atlanta Marriot Marquis, August 14-18, 1995, s. 584-589.
  • [16] Burgsdorf W.W., Wolkowa O.W.: Rasczot slożnych zaziemlitielej w niejednorodnych gruntach. Elektriczestwo, No 9, 1964.
  • [17] Cabrera V.M.: Studies of Ground Ionization and Lightning Protection of Power Lines. Acta Universitatis Upsalensis, Doct. Diss., Uppsala University 1992.
  • [18] Cattaneo S., Geri A., Mocci F., Veca G.M.: Transient Behaviour of Grounding System Simulation: Remarks on EMTP’s and Special Code’s Use. 21st EMTP Users Grup Meeting Proc., Kolympari (Crete), June 1992.
  • [19] Celebrowskij Y.W., Sawrin L.A., Bezwierchova N.A.: K woprosu o miechanizmie elektroprowodnosti gruntow. Trudy CIIBNIE, No 33, Energia 1976.
  • [20] Chisholm W.A., Janischeskij W.: Lightning Surge Response of Ground Electrodes. IEEE Trans. on Power Delivery, vol. 2, 1989.
  • [21] Cooray V., Zitnik M., Manyahi M., Montano R., Rahman M., Liu Y.: Physical Model of Surge-Current Characteristics of Buried Vertical Rods in the Presence of Soil Ionization. 26th Int. Conf. on Lightning Protection (ICLP), Cracow, September 2002, 5b.3, s. 357-362.
  • [22] Cristina S., Orlandi A.: Currents Distribution Calculation in Lightning Stroked Structure in Presence of Non-Linear Ground Impedance. 20th Int. Conf. on Lightning Protection (ICLP), Interlaken, September 1990, Paper 3.11 P.
  • [23] Da Frota Mattos M.A., Pavao A.C.: Electromagnetic Fields Generated by Transients of Grounding Grids. CIGRE Symposium, Lausanne 1993, Paper 300-08.
  • [24] Davis S., Johnson J.E.M.: The Surge Characteristics of Tower and Towerfooting Impedances. JEE, vol. 88, Pt. II, 1941.
  • [25] De Sousa A.N., Ulson J.A.C., Da Silva I.N.: A Novel Approach for Mapping Characteristics of Dynamical Grounding Systems for Lightning Protection Applications. 26th Int. Conf. on Lightning Protection (ICLP), Cracow, September 2002, 5p.6, s. 406-410.
  • [26] Dick W.K., Holliday H.R.: Impulse and Alternating Current Tests on Grounding Electrodes in Soil Enviroment. IEEE Trans. on PAS, vol. PAS-97, No 1, Jan./Feb. 1978.
  • [27] Elbert T.F.: Estimation and control of systems. Van Noxtrand Reinhold Company, New York 1984.
  • [28] Erler J.W., Snowden D.P.: High Resolution Studies of the Electric Breakdown of Soil. IEEE Trans. on Nuclear Science, vol. NS-30, No 6, Dec. 1983.
  • [29] Espel P., Bonamy A., Diaz R., Silva J.: Electrical Parameters of Discharges in Resistive Soils. 26th Int. Conf. on Lightning Protection (ICLP), Cracow, September 2002, 5b.1, s. 346-351.
  • [30] Eykhoff P.: System identification. John Wiley & Sons, New York 1974.
  • [31] Fieux R., Kouteynikoff P., Villefranque F.: Measurements of the Impulse Response of Groundings to Lightning Currents, 15th Int. Conf. on Lightning Pro.tection (ICLP), Uppsala, June 1979, Paper K. 04.
  • [32] Flanagan T.M., Mallon C.E.: Electrical Breakdown Characteristics of Soil. IEEE Trans. on Nuclear Science, vol. NS-29, No 6, Dec. 1982.
  • [33] Flanagan T.M., Mallon C.E., Denson R., Leadon R.E.: Electrical Breakdown Properties of Soil. IEEE Trans. on Nuclear Science, vol. NS-28, No 6, Dec. 1981.
  • [34] Flisowski Z.: Trendy rozwojowe ochrony odgromowej budowli. Część 1. Wyładowanie piorunowe jako źródło zagrożenia. PWN, Warszawa 1986.
  • [35] Flisowski Z.: Technika wysokich napięć. Wyd. 4, częściowo zmienione. WNT, Warszawa 1999.
  • [36] Flisowski Z., Łoboda M.: Normalizacja w zakresie ochrony odgromowej: normy PN, IEC i CENELEC. V Konf. Techniczna SEP. Nowości w instalacjach odgromowych i elektrycznych, Bielsko-Biała, Maj 2002, Mat. konf., s. 9-11.
  • [37] Garbagnati E., Geri A., Mocci F., Vecca G.M.: Non-linear Behaviour of Grounding Electrodes Under Lightning Surge Currents: Computer Modelling and Comparison with Experimental Results. IEEE Trans. on Magnetics, vol. 28, No 2, March 1992.
  • [38] Geri A.: Practical Design Criteria of Grounding System Under Surge Conditions. 25th Int. Conference on Lightning Protection (ICLP), Rhodes (Greece), Sept. 2000, 5.18, s. 458-464.
  • [39] Geri A., Visacro S.F.: Grounding Systems Under Surge Conditions: Comparison Between a Field Model and a Circuit Model. 26th Int. Conf. on Lightning Protection (ICLP), Cracow, September 2002. 5p.7. s. 411-416.
  • [40] Grcev L., Dawalibi F.: An Electromagnetic Model for Transients in Grounding Systems. IEEE Trans. on Power Delivery, vol. 5, No 4, 1990.
  • [41] Grcev L.: Voltage Gradient Distribution in Soil Near Grounding Grids Subjected to Lightning Current Impulse. IEEE/PES 1995 Winter Meeting, New York.
  • [42] Grcev L.: Analysis of the Possibility of Soil Breakdown Due to Lightning in Complex and Spacious Grounding System. 22nd Int. Conf. on Lightning Protection (ICLP), Budapest, Sept. 1994, Paper R 3a-07.
  • [43] Gupta B.R., Singh V.K.: Impulse Impedance of Rectangular Grids, IEEE Trans. on Power Delivery, vol. 7, No 1, 1992.
  • [44] Gupta B.R., Thapar B.: Impulse Impedance of Grounding Grids, IEEE Trans. on PAS, vol. PAS-99, No 6, Nov./Dec. 1980.
  • [45] Hara T., Yamamoto O., Hayashi M., Matsumura S.: Empirical Formulas of Surge Impedance for Transmission Tower. 20th Int. Conf. on Lightning Protection (ICLP), Interlaken, Sept. 1990, Paper 3.7 P.
  • [46] Hasse P., Wiesinger J.: Handbuch für Blitzschutz und Erdung. 3 Aufl. VDE-Verlag, Offenbach, Berlin; Munich 1989.
  • [47] Heidler F.: Travelling current source model for LEMP calculation. Zurich EMC Symposium, 1986, s. 245-252.
  • [48] Kałat W., Łoboda M., Pochanke Z.: Grounding System Simulation by Means of EMTP Models. Minutes of the European EMTP Users Meeting, Kopenhaga, April 1994.
  • [49] Kałat W., Łoboda M., Pochanke Z.: Implementation of The Dynamic Model of Surge Soil Conduction for Transient Behaviour of Grounding Electrodes Simulations Using ATP Version of EMTP. 22nd Int. Conf. on Lightning Protection (ICLP), Budapest, September 1994, Paper R 3a-03.
  • [50] Karmazyn M.: Puzzling Practice, Perpixity and Paradox in Lightning Protection, Earthing and Bonding. 24th Int. Conf. on Lightning Protection (ICLP), September 1998, Birmingham, Paper 5a.1, s. 492-494.
  • [51] Kindler H., Lehman V.: Design of Earthing Systems Used to Earth Lightning Currents. 21st Int. Conf. on Lightning Protection (ICLP), Berlin, Sept. 1992, Paper 3.03.
  • [52] Korsuncew A.W.: Primienienije tieorii podobia k rasczotu impulsnych charaktieristik sosriedotocznych zaziernlitielej. Elektriczestwo, No 5, 1958.
  • [53] Kosztaluk R.: Zjawiska w betonie i gruncie wywołane przepływem prądów piorunowych i zwarciowych przez fundamenty. Archiwum Elektrotechniki, Nr 1, 1976.
  • [54] Kosztaluk R. i in.: Technika badan wysokonapięciowych. T.2. WNT, Warszawa 1985.
  • [55] Kosztaluk R., Łoboda M., Flisowski Z., Marciniak R., Mikulski J.: Deep Earthing Rods in Lightning Protection Systems. 26th Int. Conf. on Lightning Protection (ICLP), Cracow, September 2002, 5b.6, s. 374-378.
  • [56] Kosztaluk R., Łoboda M., Mukhedkar D.: Experimental Study of Transient Ground Impedances. IEEE Trans. on PAS, vol. PAS-100, No 11, 1981.
  • [57] Kosztaluk R., Łoboda M., Wańkowicz J., Marciniak R.: The Role of Grounding Systems in Earth Return Circuits. GROUND’2002 lnt. Conf. on Grounding and Earthing & 3rd WAE Brazilian Workshop on Atmospheric Electricity, Rio de Janeiro, November 2002, s. 301-306.
  • [58] Leadon R.E., Flanagan T.M., Mallon C.E., Denson R.: Effect of Ambient Gas on Initiation Characteristic in Soil. IEEE Trans. on Nuclear Science, vol. NS 30, No 6, Dec. 1983.
  • [59] Lewis J.: Earthing of GIS - an Application Guide. Electra, No 151, December 1993.
  • [60] Lewis W.H.: Grounding and Bonding. Handbook of Electromagnetic Compatibility. Academic Press, San Diego 1995, s. 301-400.
  • [61] Liew A.C., Darveniza M.: Dynamic Model of Impulse Characteristic of Concentrated Earth. Proc. IEE, 1974, vol. 121, No 2, s. 123-135.
  • [62] Liu Y., Zitnik M., Gonzalez R.M., Thottappillil R.: Time-domain Model of the Grounding System Including Soil Ionization and its Application to Stratified Soil. 26th Int. Conf. on Lightning Protection (ICLP), Cracow 2-6 September 2002, 5b.2, s. 352-356.
  • [63] Long D. et al.: EMTP - A Powerful Tool for Analyzing Power System Transients. IEEE Trans. on Computer Applicatin in Power, No 3, 1990.
  • [64] Lorentzou M., Hatziargyriou N.: Effective Dimensioning of Extended Grounding Systems for Lightning Protection. 25th Int. Conf. on Lightning Protection (ICLP), Rhodes (Greece), September 2000, Paper 5.9, s. 435-439.
  • [65] Łoboda M.: Udarowe parametry rozległych uziomów poziomych w badaniach modelowych. Przegląd Elektrotechniczny, 1981, t. LVII, z. 5, s. 207-210.
  • [66] Łoboda M.: Uziemienia w urządzeniach wysokiego napięcia. WPW, Warszawa 1990.
  • [67] Łoboda M.: Dynamiczne właściwości uziemień przy przepływie prądów piorunowych. Konf. Nauk.-Techn. Urządzenia Piorunochronne w Projektowaniu i Budowie, Oddział Krakowski SEP i Polski Komitet Ochrony Odgromowej SEP, Kraków 15-16.10.1996, Referaty, s. 62-71.
  • [68] Łoboda M.: Earthing Systems for Lightning and Overvoltage Protection. Mundo Electrico Colombiano. Julio-Septembre de 1998, vol. 12, No 32. s. 118-121.
  • [69] Łoboda M.: Zazemlenia - wydy, wlastywosti ta prakticzeskij aspekt. Cz. I. Elektropanorama, nr 5, 2002, s. 28-29.
  • [70] Łoboda M.: Zazemlenia - wydy, wlastywosti ta prakticzeskij aspekt. Cz. II. Elektropanorama, nr 6, 2002, s. 14-16.
  • [71] Łoboda M.: Uziemienia w ochronie odgromowej budynków budowlanych. Elektroinfo, Nr 6/2002, s. 30-36.
  • [72] Łoboda M., Flisowski Z.: Bezpieczeństwo przepięciowe urządzeń elektrycznych i informatycznych połączonych z liniami zewnętrznymi. 4. Międzyn. Konf. Bezpieczne Instalacje Elektryczne. Stan obecny - Tendencje, Łódź, Maj 2001, s. 63-72.
  • [73] Łoboda M., Flisowski Z., Włodek R., Mazzetti C.: Problems of LPS Standardization for Structures and Plants Endangered by Fire and Explosion. 25th Int. Conf. on Lightning Protection (ICLP), Rhodes (Greece), September 2000, vol. B, s. 898-903.
  • [74] Łoboda M., Kosztaluk R.: Model Tests of Surge Properties of Grounding Systems in Lightning Protection. 16th Int. Conference on Lightning Protection (ICLP), Szeged, September 1981, Paper R-5.03.
  • [75] Łoboda M., Kuźmiński M., Flisowski Z., Mazzetti C.: Overvoltages and Overvoltage Protection in the Supply and Control Circuits of Electrical Equipment. Int. Scientific Conf. „Energy Savings in Electrical Engineering” Warsaw, May 2001, Paper nr. C-08, s. 60-64.
  • [76] Łoboda M., Marciniak R.: Specific Requirements and Reliability of Earth Termination Systems for Lightning Protection of Structures with Power installations and Communication Systems. Ground’2000. Int. Conf. on Grounding and Earthing, Belo Horizonte, Brazil, Conf. Proc., s. 55-59.
  • [77] Łoboda M., Marciniak R.: Specyficzne właściwości uziemień piorunochronnych i badania pewności ich połączeń. III Krajowa Konf. Nauk.-Techn. Urządzenia Piorunochronne w Projektowaniu i Budowie, SEP Oddział Krakowski, Kraków 2000, Referaty, s. 99-105.
  • [78] Łoboda M., Marciniak R.: Specific Problems of LPS Earth Termination Systems of Structures Equipped with Low Voltage Installations and Electronic Systems. XI Int. Conf. on Electromagnetic Disturbances - EMD 2001, Białystok, wrzesień 2001, s. 5.1-1 - 5.1-6.
  • [79] Łoboda M., Pochanke Z.: Experimental Study of Electric Properties of Soil with Impulse Current Injections. 18th lnt. Conf. on Lightning Protection (ICLP), Munich, September 16-18, 1985, Paper 3.9.
  • [80] Łoboda M., Pochanke Z.: Current and Voltage Distributions in Earthing Systems. A Numerical Simulation Based on the Dynamic Model of Impulse Soil Conductivity. Paper 3.13 P, 20th Int. Conf. on Lightning Protection, Interlaken, Sept. 1990.
  • [81] Łoboda M., Pochanke Z.: A Numerical Identification of Dynamic Model Parameters of Surge Soil Conduction Based on Experimental Data. 21st Int. Conf. on Lightning Protection (ICLP), Berlin, September 1992, Paper 3.10.
  • [82] Łoboda M., Scuka V.: On the Transient Characteristics of Electrical Discharges and Ionization Processes in Soil. 23rd Int. Conf. on Lightning Protection (ICLP), Florence, September 1996, Proc., vol. II, s. 539-534.
  • [83] Machado Moura A., Zita A. Vale, Johannet P.: Particular Aspects in the Behaviour of Earthings Submitted to Lightning Currents: An Efficient Numerical Approach. 21st Int. Conf. on Lightning Protection (ICLP), Berlin, Sept. 1992, Paper 3.07.
  • [84] Mazzetti C., Veca G.M.: Impulse Behaviour of Grounding Electrodes. IEEE Trans. on PAS, vol. PAS-102, 1983.
  • [85] Meliopoulos A.P., Moharam M.G.: Transient Analysis of Grounding Systems. IEEE Trans. on PAS, vol. PAS-102, No 2, February 1981.
  • [86] Menter F.: Accurate Modelling of Conductors Embedded in Earth with Frequency-Dependent Distributed Parameter Lines. 21st EMTP Users Grup Meeting Proc., Kolympari (Crete), June 1992.
  • [87] Menter F.: Transient Analysis of Earthing Systems. 21st Int. Conf. on Lightning Protection (ICLP), Berlin, September 1992. Paper 3.01.
  • [88] Miskin W.M., Ryabkowa E.Y.: Wlijanije niejednorodnosti zemli na impulsnyje charaktieristiki zaziernlitielej. Elektriczestwo, No 1, 1977.
  • [89] Mohamad Nor N., Srisakot S., Grifftinhs H., Haddad A.: Characterisation of Soil Ionisation under Fast Impulse. 25th Int. Conf. on Lightning Protection (ICLP), Rhodes (Greece), September 2000, P 5.6, s. 417-422.
  • [90] Mousa A.M.: Breakdown Gradient of the Soil under Lightning Discharge Conditions. Int. Aerospace and Ground Conference on Lightning and Static Electricity, Atlantic City, Oct. 1992, Paper 67.
  • [91] Mousa A.M.: The Soil Ionization Gradient Associated with Discharge of High Currents into Concentrated Electrodes. IEEE/PES 1994 Winter Meeting, 94 WM 078-6 PWRD, New York. 1994.
  • [92] Nagai Y.: Streamer Development Characteristics in the Soil in Application of Impulse Voltage. 19th Int. Conf. on Lightning Protection (ICLP), Graz, September 1988, Paper 3.8.
  • [93] Nizewskij W.I., Gul W.I.: Elektriczeskaja procznost ograniczenych obiemow grunta. Wiestnik Charkowskogo Politiechn. Instituta, No 213, Elektroeniergietika i Awtomatika Ustanowok, Wypusk 12, 1984.
  • [94] Nixon K., Jandrell I., Geldenhuyus H.: Sensitivity Analysis of Parameters Influencing the Lightning Impulse Current Behaviour of Earth Electrode Components. 25th Int. Conf. on Lightning Protection (ICLP), Rhodes (Greece), September 2000, P. 5.20, s. 484-489.
  • [95] Norinder H., Petropoulos G.: Characteristics of Pointed Electrodes and Direct Strokes in Surge Currents to Ground. Rep. 310, CIGRE Sess. 1948, 24 June-3 July, Paris.
  • [96] Oettle E. E.: A New General Estimation Curve for Predicting the Impulse Impedance of Concentrated Earth Electrodes. IEEE Trans. on Power Delivery, vol. 3, No 4, October 1988.
  • [97] Oettle E.: The Characteristics of Electrical breakdown and Ionization Processes in Soil. The Trans. of the S.A. Institute of Electrical Engineers, December 1988, s. 63-70.
  • [98] Oettle E., Geldenhys H.J.: Results of Impulse Tests on Practical Electrodes at the High-Voltage Laboratory of the National Engineering Research Institute. The Trans. of the S.A. Institute of Electrical Engineers, December 1988, s. 71-78.
  • [99] Okubo T., Hayashi M.: Reducing Effect in Footing Resistance Against Heavy Impulse Current. Memoirs of the Faculty of Engineering, Kyoto University, vol. XXV, Part 4, October 1963.
  • [100] Petropoulos G.M.: The High Voltage Characteristics of Earth Resistances. Journal IEE 1948, 95, Pt II. s. 59-70.
  • [101] Popolansky F.: Generalization of Model Measurement results of impulse Characteristics of Concentrated Earths. CIGRE WG Lightning, SC 33-80 (WG 01), August 1980.
  • [102] Popolansky F.: Impulse Characteristics of Soil. 20th Int. Conf. on Lightning Protection (ICLP). Interlaken, September 1990, Paper 3.2.
  • [103] Portela C.: Influence in Lightning Effects of Soil electromagnetic Behavior in Frequency Domain. 26th Int. Conf. on Lightning Protection (ICLP), Cracow, September 2002, Paper 5p.4, s. 394-399.
  • [104] Ramamoorty M., Babu Narayanan M.M., Parameswaran S., Mukhedkar D.: Transient Performance of Grounding Grids. IEEE Trans. on Power Delivery, vol. 4, No 4, 1989.
  • [105] Riabkowa E.Y.: lmpulsnyje issledowanija zaziemlitielej na modielach. Elektriczeskije Stancii, No 12, 1963.
  • [106] Riabkowa E.Y., Miskin V.M.: lmpulsnyje charaktieristiki zaziemlitielej opor linii elektropieredacz. Elektriczestwo No 8, 1976.
  • [107] Riabkowa E.Y.: Zaziemlenija w ustanowkach wysokogo napriatenija. Eniergia Moskwa, 1978.
  • [108] Riabkova E.Y.: Issledowanija impulsnych charakteristik zaziemlitelej po opytnom dannym. Elektriczestwo, No 11, 1983.
  • [109] Rule Book - Alternative Transient Program - (LEC 1987).
  • [110] Schonau J., Brocke R., Noack F.: The Effect of Lightning Flashes on Rocks Sand and Crystals in the Ground. 24th Int. Conf. on Lightning Protection (ICLP), Birmingham, September 1998, Paper 5a.2, s. 495-500.
  • [111] Scuka V.: The Principle of Earthing in Theory and Practice. Elpress-Abiko AB Sweden. Stockholm 1980.
  • [112] Scuka V.: Moderator’s Report: Panel Session 3 A - Lightnig Conductors and Earthing. 22nd lnt. Conf. on Lightning Protection (ICLP), Budapest, September 1994, Paper R 3a-00.
  • [113] Snowden D.P., Erler J. W.: Initiation of Electrical Breakdown of Soil by Water Vaporization, IEEE Trans. on Nuclear Science, vol. NS-30, No 6, Dec. 1983.
  • [114] Sonoda T., Takesue H., Sekioka S.: Measurements of Surge Characteristic of Grounding Resistance of Counterpoises for Impulse Currents. 25th Int. Conf. on Lightning Protection (ICLP), Rhodes (Greece), September 2000, P 5.1, s. 411-416.
  • [115] Sowa A.: Analiza zagrożenia piorunowego urządzeń elektrycznych. Wyd. Politechniki Białostockiej, Rozprawy Naukowe Nr 2, Białystok 1990.
  • [116] Sunde E.D.: Earth Conduction Effects in Transmission Systems. D. Van Nostrand Company, New York 1949.
  • [117] Szpor S., Samuła J.: Ochrona Odgromowa. Tom I. Wiadomości podstawowe. WNT, Warszawa 1983.
  • [118] Towne H.M.: Impulse Characteristics of Driven Grounds. Gen. Elec. Rev., vol. 31, 1928.
  • [119] Van Coller J.M., Jandrell I.R.: Behaviour of Interconnected Building Earths under Surge Conditions. 21st Int. Conf. on Lightning Protection (ICLP), Berlin, September 1992, Paper 3.06.
  • [120] Van Lint V.A.J., Erler J.W.: Electric Breakdown of Earth in Coaxial Geometry. IEEE Trans. on Nuclear Science, vol. NS-29, No 6, Dec. 1982.
  • [121] Velazquez R., Mukhedkar D.: Analytical Modeling of Grounding Electrodes Transient Behaviour. IEEE Trans. on PAS, vol. PAS-103, No 4, June 1984.
  • [122] Verma R., Mukhedkar D.: Impulse Impedance of Buried Ground Wire. IEEE Trans. on PAS. vol. PAS-99, No 5 Sept/Oct 1980.
  • [123] Visacro S.F., Bonaventura W., Portela C.M.: Theoretical and Experimental Investigation of Lightning Current Intensity Effect in Grounding Behaviour, 8th Int. Symp. on High Voltage Engineering, Yokohama, August 1993.
  • [124] Visacro S.F., Portela C.M.: Investigation of Earthing System Behaviour on the Influence of Atmospheric Discharges at Electrical Systems. 20th Int. Conf. on Lightning Protection (ICLP), Interlaken, Sept. 1990, Paper 3.8 P.
  • [125] Visacro S.F., Portela C.M.: Modelling of Earthing System Behaviour for Lightning Protection Applications, Including Propagation Effects 21st lnt. Conf. on Lightning Protection (ICLP), Berlin, September 1992, Paper 3.08.
  • [126] Visacro S.F., Soares A.J.: Sensitivity Analysis for the Effect of Lightning Current Intensity on the Behaviour of Earthing Systems. 22nd Int. Conf. on Lightning Protection (ICLP), Budapest, September 1994, Paper R 3a-01.
  • [127] Visacro S., Soares A., Vale M., Schroeder M.: Evaluation of Current and Potential Distribution for Lightning Protection System Including the Behaviour of Grounding Electrodes. 25th Int. Conf. on Lightning Protection (ICLP), Rhodes (Greece), September 2000, P. 5.8, s. 464-468.
  • [128] Wainer A.L.: Impulsnyje charakteristiki sloznych zaziemlitielej. Elektriczestwo, No 3, 1966.
  • [129] Wainer A.L, Fertik S.M.: Impulsnyje charaktieristiki protazennych zaziemlitielej w płocho prowodiaszczych gruntach. Elektriczestwo, No 8, 1956.
  • [130] Wainer A.L, Fertik S.M.: Primenienije elektriczeskovo modielirowanija dla rasczota grozozaszczyty zaziemliajuszczych ustrojstw. Trudy Charkowskogo Politechniceskogo Institita, Tom XII, Wypusk 2, Ser. Elektr., 1957.
  • [131] Wainer A.L, Floru W.N.: Eksperimientalnoje issledowanije i mietod rasczota impulsnych charakteristik glubinnych zaziemlitelej. Elektriczestwo, No 5, 1971.
  • [132] Wainer A.L, Potuznyj A.K., Fertik S.M.: Elektriczeskije charakteristiki jedinicznych zaziemlitielej. Elektriczeskije Stancii, No 3, 1941.
  • [133] Walko L.C.: High Current Pulse Testing for Ground Rod Integrity. Int. Aerospace and Ground Conference on Lightning and Static Electricity, Cocoa Beach, April 1991, Paper 119.
  • [134] Whithead J.T., Chisholm W.A.: IEEE Working Group Raport. Estimating Lightning Performance of Transmission Lines II - Updates to Analytical Model. IEEE Trans. on Power Delivery, vol. 8, No 3, July 1993.
  • [135] Wiesinger J.: Zur Berechnung des Stoβerdungswiederstandes von Tiefen- und Oberflächenerdem, 14th Int. Conf. on Lightning Protection (ICLP), Gdańsk, September 1978, Paper R-3.07.
  • [136] Wołkowiński K.: Uziemienia urządzeń elektroenergetycznych. Wyd. 2. WNT, Warszawa 1972.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA5-0005-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.