Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper the definition of fuzzy antinorm is modified. Some properties of finite dimensional fuzzy antinormed linear space are studied. Fuzzy (...)anti-convergence and fuzzy (...)anti-complete linear spaces are defined and some of their properties are studied.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
739--754
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
autor
autor
- Department Of Mathematics Mahishamuri Ramkrishna Vidyapith West Bengal, India, bvsdinda@gmail.com
Bibliografia
- [1] T. Bag, S. K. Samanta, Finite dimensional fuzzy normed linear space, J. Fuzzy Math. 11(3) (2003), 687–705.
- [2] T. Bag, S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems 151 (2005), 513–547.
- [3] T. Bag, S. K. Samanta, A comparative study of fuzzy norms on a linear space, Fuzzy Sets and Systems 159 (2008), 670–684.
- [4] S. Barro, R. Martin, Fuzzy Logic in Medicine, Heidelberg, Physica-Verlag, 2002.
- [5] L. C. Barros, R. C. Bassanezi, P. A. Tonelli, Fuzzy modelling in population dynamics, Ecological Modeling 128 (2000), 27–33.
- [6] S. C. Cheng, J. N. Mordeson, Fuzzy linear operators and fuzzy normed linear spaces, Bull. Calcutta Math. Soc. 86 (1994), 429–436.
- [7] B. Dinda, T. K. Samanta, Intuitionistic fuzzy continuity and uniform convergence, Int. J. Open Problems Compt. Math. 3(1) (2010), 8–26.
- [8] C. Felbin, The completion of fuzzy normed linear space, J. Math. Anal. Appl. 174(2) (1993), 428–440.
- [9] A. L. Fradkov, R. J. Evans, Control of chaos: method of application in engineering, Chaos Solitons Fractals 29 (2005), 33–56.
- [10] R. Giles, A computer program for fuzzy reasoning, Fuzzy Sets and Systems 4 (1980), 221–234.
- [11] I. H. Jebril, T. K. Samanta, Fuzzy anti-normed linear space, J. Math. Techn. (2010), 66–77.
- [12] A. K. Katsaras, Fuzzy topological vector space, Fuzzy Sets and Systems 12 (1984), 143–154.
- [13] E. P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer, Dordrecht, 2000.
- [14] O. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326–334.
- [15] T. K. Samanta, I. H. Jebril, Finite dimentional intuitionistic fuzzy normed linear space, Int. J. Open Problems Compt. Math. 2(4) (2009), 574–591.
- [16] B. Schweizer, A. Sklar, Statistical metric space, Pacific J. Math. 10 (1960), 314–334.
- [17] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0035-0020