PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quasi cl-supercontinuous functions and their function spaces

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new class of functions called 'quasi cl-supercontinuous functions' is introduced. Basic properties of quasi cl-supercontinuous functions are studied and their place in the hierarchy of variants of continuity that already exist in the mathematical literature is elaborated. The notion of quasi cl-supercontinuity, in general, is independent of continuity but coincides with cl-supercontinuity (clopen continuity) (Applied General Topology 8(2) (2007), 293-300; Indian J. Pure Appl. Math. 14(6) (1983), 767-772), a significantly strong form of continuity, if range is a regular space. The class of quasi cl-supercontinuous functions properly contains each of the classes of (i) quasi perfectly continuous functions and (ii) almost cl-supercontinuous functions; and is strictly contained in the class of quasi z-supercontinuous functions. Moreover, it is shown that if X is sum connected (e.g. connected or locally connected) and Y is Hausdorff, then the function space Lq(X, Y ) of all quasi cl-supercontinuous functions as well as the function space Lq(X, Y ) of all almost cl-supercontinuous functions from X to Y is closed in Y X in the topology of pointwise convergence.
Wydawca
Rocznik
Strony
677--697
Opis fizyczny
Bibliogr. 51 poz., rys.
Twórcy
autor
autor
Bibliografia
  • [1] N. Ajmal, J. K. Kohli, Properties of hyperconnected spaces, their mappings into Hausdorff spaces and embeddings into hyperconnected spaces, Acta Math. Hungar. 60(1-2) (1992), 41–49.
  • [2] A. K. Das, A note on -Hausdorff spaces, Bull. Calutta Math. Soc. 97(1) (2005), 15–20.
  • [3] J. Dontchev, M. Ganster, I. Reilly, More on almost s-continuity, Indian J. Math. 41 (1999), 139–146.
  • [4] S. Fomin, Extensions of topological spaces, Ann. of Math. 44 (1943), 471–480.
  • [5] E. Ekici, Generalization of perfectly continuous, regular set-connected and clopen functions, Acta Math Hungar. 107(3) (2005), 193–206.
  • [6] N. C. Heldermann, Developability and some new regularity axioms, Canadian J. Math. 33(3) (1981), 641–663.
  • [7] S. Jafari, Some properties of quasi -continuous functions, Far East J. Math. 6(5) (1998), 689–696.
  • [8] J. K. Kohli, A class of spaces containing all connected and all locally connected spaces, Math. Nachr. 82 (1978), 121–129.
  • [9] J. K. Kohli, D-continuous functions, D-regular spaces and D-Hausdorff spaces, Bull. Calcutta Math. Soc. 84 (1992), 39–46.
  • [10] J. K. Kohli, Localization, generalizations and factorizations of zero dimensionality, (preprint).
  • [11] J. K. Kohli, A. K. Das, New normality axioms and factorizations of normality, Glasnik Mat. 37(57) (2002), 105–114.
  • [12] J. K. Kohli, A. K. Das, On functionally -normal spaces, App. Gen. Topol. 6(1) (2005), 1–14.
  • [13] J. K. Kohli, A. K. Das, A class of spaces containing all generalized absolutely closed (almost compact) spaces, App. Gen. Topol. 7(2) (2006), 233–244.
  • [14] J. K. Kohli, A. K. Das, R. Kumar, Weakly functionally -normal spaces, -shrinking of covers and partition of unity, Note Mat. 19(2) (1999), 293–297.
  • [15] J. K. Kohli, R. Kumar, z-supercontinuous functions, Indian J. Pure Appl. Math. 33(7) (2002), 1097–1108.
  • [16] J. K. Kohli, D. Singh, D-supercontinuous functions, Indian J. Pure Appl. Math. 32(2) (2001), 227–235.
  • [17] J. K. Kohli, D. Singh, D-supercontinuous functions, Indian J. Pure Appl. Math 34(7) (2003), 1089–1100.
  • [18] J. K. Kohli, D. Singh, Between weak continuity and set connectedness, Stud. Cercet. Stiint. Ser. Mat. Univ. Bacau 15 (2005), 55–65.
  • [19] J. K. Kohli, D. Singh, Function spaces and strong variants of continuity, App. Gen. Topol. 9(1) (2008), 33–38.
  • [20] J. K. Kohli, D. Singh, _-perfectly continuous functions, Demonstratio Math. 42(1) (2009), 221–231.
  • [21] J. K. Kohli, D. Singh, Almost cl-supercontinuous functions, App. Gen. Topol. 10(1) (2009), 1–12.
  • [22] J. K. Kohli, D. Singh, J. Aggarwal, R-supercontinuous functions, Demonstratio Math. 43(3) (2010), 703–723.
  • [23] J. K. Kohli, D. Singh, J. Aggarwal, On certain generalizations and factorizations of normality, (preprint).
  • [24] J. K. Kohli, D. Singh, C. P. Arya, Perfectly continuous functions, Stud. Cercet. Stiint. Ser. Mat. Univ. Bacau 18 (2008), 99–110.
  • [25] J. K. Kohli, D. Singh, R. Kumar, Quasi z-supercontinuous functions and pseudo z-supercontinuous functions, Stud. Cercet. Stiint. Ser. Mat. Univ. Bacau 14 (2004), 43–56.
  • [26] J. K. Kohli, D. Singh, R. Kumar, Some properties of strongly -continuous functions, Bull. Calcutta Math. Soc. 100(2) (2008), 185–196.
  • [27] J. K. Kohli, D. Singh, R. Kumar, Generalizations of z-supercontinuous functions and D-supercontinuous functions, App. Gen. Topol. 9(2) (2008), 239–251.
  • [28] J. K. Kohli, D. Singh, B. K. Tyagi, Quasi perfectly continuous functions, Sci. Stud. Res. Ser. Math. Inform. 11(2) (2011), 23–40.
  • [29] N. Levine, Strong continuity in topological spaces, Amer. Math. Monthly 67 (1960), 269.
  • [30] N. Levine, A decomposition of continuity in topological space, Amer. Math. Monthly 68 (1961), 44–46.
  • [31] P. E. Long, L. Herrington, Strongly -continuous functions, J. Korean Math. Soc. 8 (1981), 21–28.
  • [32] P. E. Long, L. Herrington, T-topology and faintly continuous functions, Kyungpook Math. J. 22 (1982), 7–14.
  • [33] J. Mack, Countable paracompactness and weak normality properties, Trans. Amer. Math. Soc. 148 (1970), 265–272.
  • [34] H. Maki, On generalizing semi-open and preopen sets, Report for Meeting on Topological Spaces Theory and its Applications, August 1996, Yatsushiro College of Technology, pp. 13–18.
  • [35] B. M. Munshi, D. S. Bassan, Supercontinuous mappings, Indian J. Pure Appl. Math. 13 (1982), 229–236.
  • [36] S. A. Naimpally, On strongly continuous functions, Amer. Math. Monthly 74 (1967), 166–169.
  • [37] T. Noiri, On -continuous functions, J. Korean Math. Soc. 16 (1980), 161–166.
  • [38] T. Noiri, Supercontinuity and some strong forms of continuity, Indian J. Pure Appl. Math. 15(3) (1984), 241–250.
  • [39] T. Noiri, V. Popa, Weak forms of faint continuity, Bull. Math. Soc. Sci. Math. Roumanie 34(82) (1990), 263–270.
  • [40] V. Popa, T. Noiri, On M-continuous functions, Anal. Univ. “Dunarea de Jos”, Galati, Ser. Mat. Fiz. Mec. Teor. 18(23) (2000), 31–41.
  • [41] I. L. Reilly, M. K. Vamanamurthy, On supercontinuous mappings, Indian J. Pure Appl. Math. 14(6) (1983), 767–772.
  • [42] M. K. Singal, A. R. Singal, Almost continuous mappings, Yokohama Math. J. 16 (1968), 63–73.
  • [43] M. K. Singal, S. B. Niemse, z-continuous mappings, Math. Student 66(1-4) (1997), 193–210.
  • [44] D. Singh, D-continuous functions, Bull. Calcutta Math. Soc. 91(5) (1999), 385–390.
  • [45] D. Singh, cl-supercontinuous functions, App. Gen. Topol. 8(2) (2007), 293–300.
  • [46] D. Singh, Almost perfectly continuous functions, Quaestiones Math. 33(2) (2010), 211–221.
  • [47] S. Sinharoy, S. Bandhopadhyay, On -completely regular spaces and locally H-closed spaces, Bull. Calcutta Math. Soc. 87 (1995), 19–28.
  • [48] A. Sostak, A class of topological spaces containing all bicompact and all connected spaces, General Topology and its Relations to Modern Analysis and Algebra IV, Proceedings of the 4th Prague Topological Symposium (1976), Part B, 445–451.
  • [49] R. Staum, The algebra of bounded continuous functions into a nonarchimedean field, Pacific J. Math. 50(1) (1974), 169–185.
  • [50] L. A. Steen, J. A. Seebach, Jr., Counter Examples in Topology, Springer, New York, 1978.
  • [51] N. V. Veličko, H-Closed topological spaces, Amer. Math. Soc. Transl. 78 (1968), 103–118.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0035-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.