PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some weakly contractive mapping theorems in partially ordered spaces and applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to present some fixed point theorems for certain weakly contractive mappings, known as weakly (…)-contractive mappings, in a complete metric space endowed with a partial ordering. Subsequently, we apply our main results to obtain a solution of a first order periodic problem and study the possibility of optimally controlling the solutions of ordinary differential equations via dynamic programming.
Wydawca
Rocznik
Strony
621--636
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
autor
  • Department Of Mathematics Indiana University Bloomington, Indiana 47405, U.S.A, rhodes@indiana.edu
Bibliografia
  • [1] R. P. Agarwal, M. A. El-Gebeily, D. O’Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal. 87 (2008), 109–116.
  • [2] Ya. I. Alber, S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces, New result in Operator Theory and Applications, (I. Gohberg and Yu Lyubich, eds.), Oper. Theory Adv. Appl. 98, Birkhauser Verlag, Basel, 1997, 7–22.
  • [3] A. Aliouche, Common fixed point theorems of Gregus type for weakly compatible mappings satisfying generalized contractive conditions, J. Math. Anal. Appl. 341 (2008), 707–719.
  • [4] J. Altum, D. Turkoglu, B. E. Rhoades, Fixed points of weakly compatible maps satisfying a general contractive condition of integral type, Fixed Point Theory and Applications, article ID 17301, Vol. 2007 (2007), 1–9.
  • [5] Dz. Burgic, S. Kalabusic, M. R. S. Kulenovic, Global attractivity results for mixed monotone mappings in partially ordered complete metric spaces, Fixed Point Theory and Applications, Art. ID 762478, Vol. 2009 (2009), 1–17.
  • [6] A. Cabada, J. J. Nieto, Fixed points and approximate solutions for nonlinear operator equations, J. Comput. Appl. Math. 113 (2000), 17–25.
  • [7] Lj. B. Ćirić, N. Cakic, M. Rajovic, J. S. Ume, Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory and Applications, Art. ID 131294, Vol. 2008 (2008), 1–11.
  • [8] L. C. Evans, Partial Differential Equations, Vol. 19, American Mathematical Society, 1998.
  • [9] T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379–1393.
  • [10] J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. 71 (2009), 3403–3410.
  • [11] V. Lakshmikantham, Lj. B. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009), 4341–4349.
  • [12] J. J. Nieto, R. Rodríguez-López, Existence of extremal solutions for quadratic fuzzy equations, Fixed Point Theory and Applications, Vol. 2005 (3) (2005), 321–342.
  • [13] J. J. Nieto, R. Rodríguez-López, Contractive mapping theorms in partially ordered sets and applications to ordinary differential equations, Order 22 (2005), 223–239.
  • [14] J. J. Nieto, R. Rodríguez-López, Applications of contractive-like mapping principles to fuzzy equations, Rev. Mat. Complut. 19 (2006), 361–383.
  • [15] J. J. Nieto, R. L. Pouso, R. Rodríguez-López, Fixed point theorems in ordered abstract spaces, Proc. Amer. Math. Soc. 135 (2007), 2505–2517.
  • [16] J. J. Nieto, R. Rodríguez -López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sinica 23 (2007), 2205–2212.
  • [17] D. O’Regan, A. Petrusel, Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl. 341(2) (2008), 1241–1252.
  • [18] H. K. Pathak, N. Shahzad, Fixed points for generalized contractions and applications to control theory, Nonlinear Anal. 68 (2008), 2181–2193.
  • [19] A. Petrusel, I. A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134 (2006), 411–418.
  • [20] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004), 1435–1443.
  • [21] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47 (2001), 2683–2693.
  • [22] A. Tarski, A latice-theoretical fixpoint theorem and its applications, Pacific J. Math. 5 (1955), 285–309.
  • [23] Y. Wu, New fixed point theorems and applications of mixed monotone operator, J. Math. Anal. Appl. 341 (2008), 883–893.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0035-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.