PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Deformed fock spaces, Hecke operators and monotone Fock space of Muraki

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main purpose of this paper is to extend our previous construction of T-Fock spaces from a given Yang-Baxter operator satisfying the inequalities (…) to the constructions of T-symmetric Fock spaces related to the class of Yang-Baxter-Hecke operators meeting a weaker condition that (…) .The new representation of the monotone Fock space of N.Muraki will be given. The main idea of this paper is the new class of generalized Gaussian random variables acting on suitable T-symmetric Fock spaces. Relations with the row and column operator space will be also given.
Słowa kluczowe
Wydawca
Rocznik
Strony
399--414
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
  • Institute Of Mathematics University Of Wroclaw Pl. Grunwaldzki 2/4 50-384 Wroclaw, Poland, bozejko@gmail.com
Bibliografia
  • [1] S.T.Belinschi, M.Bożejko, F.Lehner, R.Speicher, The normal distribution is .in .nitely divisible, Adv.Math. 226(4)(2011), 3677-3698.
  • [2] M.Bożejko, B.Kummerer, R.Speicher, qGaussian processes: non commutative and classical aspects, Comm.Math.Phys.185(1)(1997),129 .154.
  • [3] M.Bożejko, A.D.Krystek, J.Wojakowski, Remarks on the r and _ convolutions, Math. Z.253(1)(2006), 177-196.
  • [4] M.Bożejko, E.Lytvynov, Meixner class of non commutative generalized stochastic processes with freely independent values. I.A characterization ,Comm. Math.Phys.292(1)(2009),99 .129.
  • [5] M.Bożejko, E.Lytvynov, J.Wysoczański, Noncommutative Lévy processes for generalized (particularly anyon) statistics ,to appear in Comm. Math. Phys., 2012.
  • [6] M.Bożejko, R.Speicher, An example of a generalized Brownian motion ,Comm. Math.Phys.137(3)(1991),519 .531.
  • [7] M.Bożejko, R.Speicher, An example of a generalized Brownian motion. II ,in: Quantum probability &related topics, QP PQ, VII, pages 67 .77.World Sci. Publ., River Edge,NJ,1992.
  • [8] M.Bożejko, R.Speicher, Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces , Math.Ann.300(1)(1994),97 .120.
  • [9] A.Buchholz, Operator Khintchine inequality in non commutative probability, Math.Ann.319(1)(2001),1 .16.
  • [10] R.Goodman, N.R.Wallach, Representations and invariants of the classical groups ,volume 68 of Encyclopedia of Mathematics and its Applications ,Cambridge University Press,Cambridge,1998.
  • [11] U.Haagerup, G.Pisier, Bounded linear operators between C_algebras, Duke Math.J.71(3)(1993),889 .925.
  • [12] P.E.T.Jorgensen, L.M.Schmitt, R.F.Werner. Positive representations of general commutation relations allowing Wick ordering, J.Funct.Anal.134(1) (1995),33 .99.
  • [13] I.Krolak, Wick product for commutation relations connected with Yang–Baxter operators and new constructions of factors, Comm.Math.Phys.210(3)(2000), 685 .701.
  • [14] F.Lust Piquard, Riesz transforms on deformed Fock spaces ,Comm. Math. Phys.205 (3)(1999),519 .549.
  • [15] N.Muraki, Noncommutative Brownian motion in monotone Fock space ,Comm. Math.Phys.183(3)(1997),557 .570.
  • [16] N.Muraki, Monotonic convolution and monotonic Lévy Hin ˆcin formula, preprint, 2000.
  • [17] A.Nou, Non injectivity of the qdeformed von Neumann algebra, Math.Ann. 330(1)(2004),17 .38.
  • [18] W.Pusz, Twisted canonical anticommutation relations ,Rep.Math.Phys.27(3) (1989),349 .360.
  • [19] W.Pusz, S.L.Woronowicz, Twisted second quantization, Rep. Math.Phys. 27(2)(1989),231 .257.
  • [20] E.Ricard, Factoriality of qGaussian von Neumann algebras ,Comm. Math. Phys.257(3)(2005),659 .665.
  • [21] P.Sniady, Factoriality of Bożejko –Speicher von Neumann algebras ,Comm. Math.Phys.246(3)(2004),561 .567.
  • [22] R.Speicher, Generalized statistics of macroscopic .elds, Lett. Math. Phys. 27(2)(1993),97 .104.
  • [23] J.Wysoczański, bm independence and bm central limit theorems associated with symmetric cones ,In .n. Dimens. Anal. Quantum Probab.Relat.Top.13(3) (2010),461 .488.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0034-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.