Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We investigate conditional stable processes in a Lipschitz domain D and conditional stable processes in the image of D under the Kelvin transform. We show that, with a suitable change of time, these processes are equal in distribution. As an application, we show the equivalence of the Hardy spaces and the relative Fatou theorem for D and its image.
Wydawca
Czasopismo
Rocznik
Tom
Strony
361--376
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
autor
- Institute Of Mathematics Wrocław University Of Technology Wyb.Wyspiańskiego 27 50 -370 Wrocław, Poland, krzysztof.michalik@pwr.wroc.pl
Bibliografia
- [1] H.Aikawa, T.Kilpelainen, N.Shanmugalingam, X.Zhong, Boundary Harnack principle for p-harmonic functions in smooth Euclidean domains Potential Anal.26 (2007), 281 –301.
- [2] R.Banuelos, K.Bogdan, Symmetric stable processes in cones Potential Anal.21 (2004),263 –288.
- [3] R.Banuelos, R.G.Smits, Brownian motion in cones Probab. Theory Related Fields 108(3)(1997),299 –319.
- [4] R.F.Bass, Probablistic Techniques in Analysis Springer Verlag, New York, 1995.
- [5] R.F.Bass, K.Burdzy, A probabilistic proof of the boundary Harnack principle in: Seminar on Stochastic Processes, 1989 (San Diego, CA„ 1989)pages 1 –16, Birkhäuser Boston,1990,Boston,MA.
- [6] A.S.Besicovitch, A general form of the covering principle and relative differentiation of additive functions. II Proc. Cambridge Phil.Soc.42 (1946),1 –10 (2000),75 –91.
- [7] R.M.Blumenthal, R.K.Getoor, Markov Processes and Potential Theory Academic Press, New York, 1969.
- [8] R.M.Blumenthal, R.K.Getoor, D.B.Ray, On the distribution of first hits for the symmetric stable processes Trans.Amer.Math.Soc.99 (1961),540 –554.
- [9] K.Bogdan, Representation of _ -harmonic functions in Lipshitz domains Hiroshima Math.J.29 (1999),578 –588.
- [10] K.Bogdan, The boundary Harnack principle for fractional Laplacian Studia Math. 123(1)(1997),43 –80.
- [11] K.Bogdan, T.Byczkowski, Potential theory for the _ -stable Schrödinger operator on bounded Lipchitz domains Studia Math.133(1)(1999),53 –92.
- [12] K.Bogdan, T.Żak, On Kelvin transformation J.Theor.Probab.19(1)(2006), 89–120.
- [13] K.Bogdan, T.Jakubowski, Problème de Dirichlet pour les fonctions _ -harmoniques sur les domaines coniques Ann.Math.Blaise Pascal 12 (2005),297 –308.
- [14] K.Bogdan, B.Dyda, Relative Fatou theorem for harmonic functions of rotation invariant stable processes in smooth domains Studia Math.157(1)(2003),83 –96.
- [15] K.Bogdan, T.Kulczycki, A.Nowak, Gradient estimates for harmonic and q-harmonic functions of symmetric stable processes Illinois J.Math.46 (2002),541 –556.
- [16] K.Bogdan, A.Stós, P.Sztonyk, Potential theory for Lévy stable processes Bull. Polish Acad.Sci.Math.50(3)(2002).
- [17] L.Carleson, Selected Problems on Exceptional Sets D.Van Nostrand Co.,Inc.,1967, London.
- [18] Z Q.Chen, R.Song, Estimates of the Green functions and Poisson kernels of symmetric stable processes Math.Ann.312 (1998),465 –601.
- [19] J.L.Doob, A relativized Fatou theorem Proc.Nat.Acad.Sci.U.S.A.45 (1959), 215 –122.
- [20] J.L.Doob, Classical Potential Theory and its Probabilistic Counterpart Springer, New York,1984.
- [21] T.Jakubowski, The estimates for the Green function in Lipschitz domains for the symmetric stable processes Probab.Math.Statist.22(2)(2003),419 –441.
- [22] T.Kulczycki, Properties of Green function of symmetric _ -stable processes Probab. Math.Statist.17(2)(1997),381 –406.
- [23] N.S.Landkof, Foundations of Modern Potential Theory Springer,New York,1972.
- [24] J.E.Littlewood, R.E.Paley, Theorems on Fourier series and power series (I),J. London Math.Soc.6 (1931),230 –233;(II) Proc. London Math Soc.42 (1936),52 –89; (III)ibid.,43 (1938),105 8126.
- [25] P.Kim, Relative Fatou’s theorem for ( _) _/2 -harmonic functions in bounded _ -fat open sets J.Funct.Anal.234(1)(2006),70 –105.
- [26] P.J.Méndez Hernández, Exit times from cones in Rn of symmetric stable processes Illinois J.Math.46 (2000),155 –163.
- [27] K.Michalik, Sharp estimates of the Green function, Poisson kernel and Martin kernel of cones for symmetric stable processes Hiroshima Math.J.29 (2006),1 –21.
- [28] K.Michalik, M.Ryznar, Relative Fatou theorem for _ -harmonic functions in Lipschitz domains Illinois J.Math.48(3)(2004),977 –998.
- [29] K.Michalik, M.Ryznar, Hardy spaces for _ -harmonic functions in regular domains Math.Z.265 (2010),173 –186.
- [30] R.Song, J.M.Wu, Boundary Harnack principle for symmetric stable processes J. Funct.Anal.168 (1999),403 –427.
- [31] E.M.Stein, Singular integrals and differentiability properties of functions Princeton University Press,Princeton,N.J.,1970.
- [32] E.M.Stein, On the functions of Littlewood–Paley, Lusin and Marcinkiewicz Trans. Amer.Math.Soc.88 (1958),430 –466.
- [33] E.M.Stein, Boundary behaviour of holomorphic function of several complex variables Princeton University Press and University of Tokyo Press, Princeton,N.J., 1972.
- [34] E.M.Stein, Topics in harmonic analysis related to the Littlewood-Paley theory Annals of Math.Study #63,Princeton Univ.Press.
- [35] P.Sztonyk, On harmonic measure for Lévy processes Probab.Math.Statist.20(2) (2000),383 –390.
- [36] J.M.Wu, Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains Ann.Inst.Fourier (Grenoble)28(4)(1978), 147 –167.
- [37] J.M.Wu, Harmonic measures for symmetric stable processes Studia Math.149(3) (2002),281 –293.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0034-0032