PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

On the random functional central limit theorems with almost sure convergence for subsequences

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we present functional random sum central limit theorems with almost sure convergence for independent nonidentically distributed random variables. We consider the case where the summation random indices and partial sums are independent. In the past decade several authors have investigated the almost sure functional central limit theorems and related 'logarithmic 'limit theorems for partial sums of independent random variables. We extend this theory to almost sure versions of the functional random sum central limit theorems for subsequences.
Wydawca
Rocznik
Strony
283--296
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
Bibliografia
  • [1] M.Atlagh, M.Weber, Un théorème central limite presque sûr relatif à des sous-suites C.R.Acad. Sci. Math. Paris Sér. I 315 (1992), 203–206.
  • [2] I.Berkes, E.Csáki, A universal result in almost sure central limit theory Stochastic Process.Appl.94 (2001), 105–134.
  • [3] I.Berkes, E.Csaki, S.Csörgő, Almost sure limit theorems for the St. Petersburg game Statist.Probab.Lett.45 (1999), 23–30.
  • [4] P.Billingsley, Convergence of Probability Measures Wiley, New York, 1968.
  • [5] M.Csörgő, L.Horváth, Invariance principles for logarithmic averages Math.Proc. Cambridge Philos.Soc.112 (1992), 195–205.
  • [6] I.Fazekas, Z.Rychlik, Almost sure functional limit theorems Ann.Univ.Mariae Curie Skłodowska 56(1)(2002),1 –18.
  • [7] D.Freedman, Brownian Motion and Diffusion Holden Day,1971.
  • [8] A.Gut, Stopped Random Walks: Limit Theorems and Applications Springer Verlag, New York,Berlin,Heidelberg,London,Paris,Tokyo,1988.
  • [9] M.Lifshits, On the difference between CLT and ASCLT Zapiski Seminarov POMI 260 (2000),186 –201 (in Russian).
  • [10] M.T.Lacey, W.Philipp, A note on the almost sure central limit theorem Statist. Probab.Lett.9 (1990),201 –214.
  • [11] M.Orzóg, Z.Rychlik, On the random functional central limit theorems with almost sure convergence (2005),submitted.
  • [12] Yu.V.Prokhorov, Convergence of random processes and limit theorems in probability theory Teor.Veroyatnost.i Primenen.1 (1956),177 –238;English translation in: Theory Probab.Appl.1 (1956),157 –214.
  • [13] B.Rodzik, Z.Rychlik, An almost sure central limit theorem for independent random variables Ann.Inst.H.Poincaré 30 (1994),1 –11.
  • [14] Z.Rychlik, D.Szynal, A functional random-sum central limit theorem Bull.Acad. Polon.Sci.,Sér.Sci.Math.Astronom.Phys.23 (1975),1013 –1018.
  • [15] Z.Rychlik, K.S.Szuster, Some remarks on the almost sure central limit theorem for independent random variables Probab.Math.Statist.13 (2003),241 –249.
  • [16] Z.Rychlik, K.S.Szuster, On strong versions of the central limit theorem Statist. Probab.Lett.61 (2003),348 –357.
  • [17] P.Schatte, On strong versions of the central limit theorem Math.Nachr.137 (1988), 249–256.
  • [18] P.Schatte, On the central limit theorem with almost sure convergence Probab.Math. Statist.11 (1991),315 –343.
  • [19] P.Schatte, Two remarks on the almost sure central limit theorem Math.Nachr.154 (1991),225 –229.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0034-0027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.