Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Three variants of R-weakly commuting mappings in the realm of uniform spaces are defined. Examples are included to reflect upon the distinctiveness of the notions so defined. Common fixed point theorems concerning these variants of R-weakly commuting mappings in the framework of uniform spaces are obtained. This generalizes several known results in the literature including those of Granas and Dugundji [3], Tarafdar [12] and others. Moreover, as a bi-product we obtain several common fixed point theorems which are well in contrast with a common fixed point theorem of Jungck [4] who proved the same for commuting mappings.
Wydawca
Czasopismo
Rocznik
Tom
Strony
169--178
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
autor
- Department Of Mathematics Hindu College, University Of Delhi Delhi 110007, India, jk_kohli@yahoo.co.in
Bibliografia
- [1] S. P. Acharya, Some results on fixed points in uniform spaces, Yokohama Math. J. 22 (1974), 105–116.
- [2] N. Bourbaki, General Topology, Springer-Verlag, New York, 1980.
- [3] A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, Inc., 2003.
- [4] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly 83 (1976), 261–263.
- [5] J. L. Kelly, General Topology, Van-Nostrand, Princeton, 1955.
- [6] J. K. Kohli, J. Aggarwal, D. Kumar, Common fixed point theorems for non-commuting mappings in topologically complete Tychonoff (uniform) spaces, Indian J. Math. 52 (1) (2010), 31–45.
- [7] M. G. Murdeshwar, General Topology, New Age International (P) Limited, Publishers, New Delhi, 1999.
- [8] R. P. Pant, Common fixed points of non-commuting mappings, J. Math. Anal Appl. 188 (1994), 436–440.
- [9] H. K. Pathak, Y. J. Cho, S. M. Kang, Remarks on R -weakly commuting mappings and common fixed point theorems, Bull. Korean Math. Soc. 34 (1997), 247–257.
- [10] B. E. Rhoades, Fixed point theorems in uniform spaces, Publications, DCL’ Institut Mathematique Novelle Serie Tome, 25(39) (1970), 153–156.
- [11] B. E. Rhoades, S. Park, K. B. Moon, On generalization of the Meir-Keeler type contraction maps, J. Math. Anal. Appl. 146 (1990), 482–494.
- [12] E. Tarafdar, An approach to fixed point theorems in uniform spaces, Trans. Amer. Math. Soc. 191 (1974), 209–225.
- [13] E. Tarafdar, S. P. Singh, B. Watson, Fixed point theorems for some extensions of contraction mappings on uniform spaces, The Journal of Math. Sciences 1 (2002), New Series, 53–61.
- [14] D. Türko¡glu, Fixed point theorems on uniform spaces, Indian J. Pure Appl. Math. 34(3) (2003), 453–459.
- [15] D. Türko¡glu, Some fixed point theorems for hybrid contractions in uniform space, Taiwanese J. Math. 12(3) (2008), 807–820.
- [16] D. Türko¡glu, Some common fixed point theorems for weakly compatible mappings in uniform space, Acta Math. Hungar. 126(3) (2010), 489–496.
- [17] D. Türko¡glu, H. Aslan, S. N. Mishra, A fixed point theorem for multivalued mappings in uniform space, J. Concr. Appl. Math. 5(4) (2007), 331–336.
- [18] D. Türko¡glu, B. Fisher, Fixed point of multivalued mapping in uniform spaces, Proc. Indian Acad. Sci. (Math. Sci.) 113 (2003), 183–187.
- [19] D. Türko¡glu, B. E. Rhoades, A general fixed point theorem for multivalued mapping in uniform spaces, Rocky Mountain J. Math. 38(2) (2008), 639–647.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0034-0017