PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some fixed point theorems for multivalued mappings in dislocated quasi-metric spaces

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we give some definitions and conclusions in dislocated quasi-metric spaces. Also, we establish two fixed point theorems for multivalued mappings in these spaces.
Wydawca
Rocznik
Strony
155--160
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Department Of Mathematics Faculty Of Science Assiut University Assiut 71516, Egypt, mahmed68@yahoo.com
Bibliografia
  • [1] M. E. Abd El-Monsef, A. A. Nasef, On multifunctions, Chaos, Solitons Fractals 12 (2001), 2387–2394.
  • [2] M. A. Ahmed, Common fixed point theorems for set-valued and single-valued map-pings, Demonstratio Math. 36(2) (2003), 471–481.
  • [3] M. A. Ahmed, Common fixed point theorems for weakly compatible mappings, Rocky Mountain J. Math. 33(4) (2003), 1189–1203.
  • [4] M. A. Ahmed, Common fixed point theorems under contractive conditions of Skof type, Pure Math. Appl. 15(1) (2004), 17–27.
  • [5] M. A. Ahmed, B. E. Rhoades, Some common fixed point theorems for compatible mappings, Indian J. Pure Appl. Math. 32(8) (2001), 1247–1254.
  • [6] P. Z. Daffer, H. Kaneko, Applications of F -contraction mappings to nonlinear integral equations, Bull. Inst. Math. Acad. Sinica 22 (1994), 69–74.
  • [7] B. C. Dhage, On a fixed point theorem in Banach algebras with applications, Appl. Math. Lett. 18 (2005), 273–280.
  • [8] T. L. Hicks, Multivalued mappings on probabilistic metric spaces, Math. Japon. 46 (1997), 413–418.
  • [9] P. Hitzler, Generalized metrics and topology in logic programming semantics, Ph. D. Thesis, National University of Ireland (University College Cork) (2001).
  • [10] P. Hitzler, A. K. Seda, Dislocated topologies, J. Electr. Engin. 51 (2000), 3–7.
  • [11] N. Hussain, A. R. Khan, Common fixed-point results in best approximation theory, Appl. Math. Lett. 16 (2003), 575–580.
  • [12] S. Itoh, Single-valued mappings, multivalued mappings and fixed point theorems, J. Math. Anal. Appl. 59 (1977), 514–521.
  • [13] H. K. Pathak, B. Fisher, Common fixed point theorems with applications in dynamic programming, Glas. Mat. 31 (1996), 321–328.
  • [14] J. J. M. M. Rutten, Elements of generalized ultrametric domain theory, Theoret. Comput. Sci. 170 (1996), 349–381.
  • [15] P. Waszkiewicz, Quantitative continuous domains, Ph. D. Thesis, The University of Birmingham (2002).
  • [16] E. Zeidler, Nonlinear Functional Analysis and Applications, New York, Springer-Verlag Inc, (1986).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0034-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.