Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we prove some fixed point theorems for two hybrid pairs of mappings in 2-metric spaces by using some weaker conditions.
Wydawca
Czasopismo
Rocznik
Tom
Strony
143--154
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
Bibliografia
- [1] Abd EL-Monsef, H. M. Abu-Donia, Kh. Abd-Rabou, New types of common fixed point theorems in 2-metric spaces, Chaos Solitons Fractals 41 (2009), 1435–1441.
- [2] B. C. Dhage, Generalized metric space and mapping with fixed point, Bull. Culcutta Math. Soc. 84(6) (1992), 329–334.
- [3] B. C. Dhage, Generalized metric spaces and topological structure I, An. Stiint. Univ. Al. I. Cuza Iasi Mat. 46(1) (2000), 3–24.
- [4] B. C. Dhage, On generalized metric spaces and topological structure II, Pure Appl. Math. Sci. 40(1–2) (1994), 37–41.
- [5] B. C. Dhage, On continuity of mappings in D-metric spaces, Bull. Culcutta Math. Soc. 86(6) (1994), 503–508.
- [6] M. S. EI Naschie, Wild topology hyperbolic geometry and fusion algebra of high energy particle physics, Chaos Solitons Fractals 13 (2002), 1935–1945.
- [7] B. Fisher, Common fixed points of mappings and set-valued mappings on metric spaces, Kyungpook Math. J. 25 (1985), 35–42.
- [8] B. Fisher, S. Sessa, Two common fixed point theorems for weakly commuting map-pings, Period. Math. Hungar. 20(3) (1989), 207–218.
- [9] S. Gähler, Uber die niformisierbakait 2-metrische Räume, Math. Nachr. 28 (1965), 235–244.
- [10] S. Gähler, Zur geometric 2-metrische Räume, Rev. Roumaine Math. Pures Appl. 11 (1966), 655–664.
- [11] S. Gähler, 2-metrische Räume und ihre topologische structure, Math. Nachr. 26 (1963), 115–148.
- [12] A. Hsiao, Property of contractive type mappings in 2-metric spaces, Inanabha 16 (1986), 223–239.
- [13] K. Iseki, Fixed point theorems in 2-metric spaces, Math. Sem. Notes 3 (1975), 133–136.
- [14] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Sci. 9 (1986), 771–779.
- [15] G. Jungck, B. E. Rhoades, Some fixed point theorems for compatible maps, Int. J. Math. Sci. 16 (1993), 417–428.
- [16] G. Jungck, B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (1998), 227–238.
- [17] S. Krzyska, I. Kubiaczyk, Fixed point theorems for upper semicontinuous and weakly-weakly upper semicontinuous multivalued mappings, Math. Japon. 47(2) (1998), 237–240.
- [18] I. Kubiaczyk, B. Deshpande, Noncompatibility, discontinuity in consideration of common fixed point of set and single-valued maps, Southeast Asian Bull. Math. 32 (2008), 467–474.
- [19] Z. Mustafa, U. Sims, Some remarks concerning D-metric spaces, International Conference of Fixed Point Theory and Applications, Yokohama 2004, 189–198.
- [20] Z. Mustafa, U. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7(2) (2006), 289–297.
- [21] S. V. R. Naidu, J. R. Prasad, Fixed point theorem in 2-metric spaces, Indian J. Pure Appl. Math. 17 (1986), 974–993.
- [22] R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl. 188 (1994), 436–440.
- [23] R. P. Pant, Common fixed point theorems for contractive maps, J. Math. Anal. Appl. 226 (1998), 251–258.
- [24] R. P. Pant, Common fixed points of Lipschitz type mapping pair, J. Math. Anal. Appl. 240 (1999), 280–283.
- [25] R. P. Pant, Discontinuity and fixed points, J. Math. Anal. Appl. 240 (1999), 284–289.
- [26] H. K. Pathak, Y. J. Cho, S. M. Kang, Remarks on R-weakly commuting mappings and common fixed point theorems, Bull. Korean Math. Soc. 34 (1997), 247–257.
- [27] H. K. Pathak, S. M. Kang, J. H. Baek, Weak compatible mappings of type ( A ) and common fixed points, Kyungpook Math. J. 35 (1995), 345–359.
- [28] R. A. Rashwan, M. A. Ahmed, Common fixed points for weakly compatible mappings, Ital. J. Pure Appl. Math. 8 (2000), 35–44.
- [29] R. A. Rashwan, M. A. Ahmed, Common fixed points for compatible mappings, Southwest J. Pure Appl. Math. 1 (1996), 51–61.
- [30] R. A. Rashwan, Fixed points of single and set-valued mappings, Kyungpook Math. J. 38 (1998), 29–37.
- [31] B. E. Rhoades, Common fixed points of compatible set-valued mappings, Publ. Math. Debrecen 48(3–4) (1996), 237–240.
- [32] B. E. Rhoades, S. Park, K. B. Moon, On generalizations of the Meir–Keeler type contraction maps, J. Math. Anal. Appl. 146 (1990), 482–494.
- [33] S. Sessa, On weak commutativity condition of mappings in fixed point cosiderations, Publ. Inst. Math. (Beograd) 32(46) (1982), 149–153.
- [34] S. Sessa, M. S. Khan, Some remarks in best approximation theory, Math. J. Toyama Univ. 17 (1994), 151–165.
- [35] S. Sharma, B. Deshpande, Fixed point theorems for set and single valued maps without continuity and compatibility, Demonstratio Math. 40 (2007), 649–658.
- [36] S. Sharma, B. Deshpande, R. Pathak, Common fixed point theorems for hybrid pairs of mappings with some weaker conditions, Fasc. Math. 39 (2008), 53–67.
- [37] K. Tas, M. Telki, B. Fisher, Common fixed point theorems for compatible mappings, Int. J. Math. Math. Sci. 19(3) (1996), 451–456
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0034-0014