PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

On subordination for higher-order derivatives of multivalent functions associated with the generalized srivastava-attiya operator

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we study and use differential subordination methods to obtain several interesting subordination results and best dominants for higher order derivatives of multivalent functions deffined with Srivastava Attiya operator.
Wydawca
Rocznik
Strony
39--50
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
Bibliografia
  • [1] R.M.Ali, A.O.Badghaish, V.Ravichandran, Subordination for higher-order derivatives of multivalent functions J.Inequal. Appl. (2008), 1–12.
  • [2] R.M.Ali, V.Ravichandran, S.K.Lee, Subclasses of multivalent starlike and convex functions Bull. Belg. Math. Soc. Simon Stevin 16(3)(2009), 385–394.
  • [3] O.Altintas, Neighborhoods of certain p-valently functions with negative coefficients Appl.Math.Comput.187(1)(2007), 47–53.
  • [4] O.Altintas, H.Irmak, H.M.Srivastava, Neighborhoods for certain subclasses of multivalently analytic functions defined by using a differential operator Comput. Math. Appl. 55(3)(2008), 331–338.
  • [5] A.A.Attiya, H.M.Srivastava, An integral operator associated with the Hurwitz–Lerch Zeta function and differential subordination Inegral Tranforms and Special Functions 18 (2007), 207–216.
  • [6] M.P.Chen, H.Irmak, H.M.Srivastava, Some multivalent functions with negative coefficients defined by using a differential operator Panamer. Math.J. 6(2)(1996), 55–64.
  • [7] H.Irmak, A class of p-valently analytic functions with positive coefficients Tamkang J.Math. 27(4)(1996), 315–322.
  • [8] H.Irmak, N.E.Cho, A differential operator and its applications to certain multivalently analytic function Hacet. J.Math. Stat. 36(1)(2007), 1–6.
  • [9] H.Irmak, S.H.Lee, N.E.Cho, Some multivalently starlike functions with negative coefficients and their subclasses defined by using a differential operator Kyungpook Math.J. 37(1)(1997), 43–51.
  • [10] I.S.Jack, Functions starlike and convex of order, J.London Math.Soc. 3(2)(1971), 469–474.
  • [11] W.Janowski, Some extremal problems for certain families of analytic functions. I Ann. Polon. Math. 28 (1973), 297–326.
  • [12] O.O.Kilic, Sufficient conditions for subordination of multivalent functions J.Inequal.Appl.2008,Article ID 374756,8 pages.
  • [13] J.L.Liu, Subordinations for certain multivalent analytic functions associated with the generalized Srivastava-Attiya operator Integal Trasforms Spec.Funct.19(12)(2008), 893–901.
  • [14] W.C.Ma, D.Minda, A unified treatment of some special classes of univalent functions Conference Procedings and Lecture Notes in Analysis.I, pp.157–169, International Press, Tianjin, China, 1994.
  • [15] S.S.Miller ,P.T.Mocanu, Differential subordination: Theory and Applications vol. 225 of Monographs and Textbooks in Pur. Appl. Math., Marcel Dekker, NewYork, NY USA.2000.
  • [16] M.Nunokawa, On the multivalent functions Indian J.Pure Appl.Math.20(6)(1989), 577–582.
  • [17] M.Obradovič, N.Tuneski, On the starlike criteria defined by Silverman Zeszyty Nauk. Politech. Rzeszowskiej Mat.181(24)(2000), 59–64.
  • [18] Y.Polatoglu, Some results of analytic functions in the unit disc Publ. Inst. Math. 78(92)(2005), 79–85.
  • [19] Y.Polatoglu, M.Bolcal, The radius of convexity for the class of Janowski convex functions of complex order Math. Vesnik 54(1 2)(2002), 9–12.
  • [20] V.Ravichandran, M.Darus, On a criteria for starlikenss Internat. J.Math.4(2) (2003), 119–125.
  • [21] H.Silverman, Higher order derivatives Chinese J.Math.23(2)(1995), 189–191.
  • [22] T.Yaguchi, The radii of starlikeness and convexity for certain multivalent functions Current Topics in Analytic Function Theory, World Scientic, River Edge, NJ, USA, 1992, 375–386.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0034-0006
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.