Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Characterizations of fuzzy ideals of a pseudo-BCK algebra are established. Conditions for a fuzzy set to be a fuzzy ideal are given. Given a fuzzy set ž, the least fuzzy ideal containing ž is constructed. The homomorphic properties of fuzzy ideals of a pseudo-BCK algebra are provided. Finally, characterizations of Noetherian pseudo-BCK algebras and Artinian pseudo-BCK algebras in terms of fuzzy ideals are given.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1--15
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
autor
- Faculty of Mathematics and Natural Sciences The John Paul II Catholic University Of Lublin Konstantynów 1H 20-708, Lublin, Poland, gdymek@o2.pl
Bibliografia
- [1] C.C. Chang, Algebraic analysis of many valued logics Trans.Amer.Math.Soc.88 (1958),467 –490.
- [2] G.Georgescu, A.Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV algebras The Proc. of the Fourth International Symp. on Economic Informatics, Bucharest, Romania, May 1999, 961–968.
- [3] G.Georgescu ,A.Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL algebras Abstracts of the Fifth International Conference FSTA 2000, Slovakia, February 2000, 90–92.
- [4] G.Georgescu, A.Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras Proc. of DMTCS’01: Combinatorics, Computability and Logic, Springer, London, 2001, 97–114.
- [5] P.Hájek, Metamathematics of fuzzy logic Inst. of Comp. Science, Academy of Science of Czech Rep., Technical report 682 (1996).
- [6] P.Hájek, Metamathematics of Fuzzy Logic Kluwer Acad. Publ., Dordrecht, 1998.
- [7] R.Halaš, J.Kühr, Deductive systems and annihilators of pseudo-BCK algebras Ital. J.Pure Appl.Math.25 (2009).
- [8] Y.Imai, K.Iséki, On axiom systems of propositional calculi XIV Proc. Japan Acad. 42 (1966), 19–22.
- [9] A.Iorgulescu, Classes of pseudo-BCK algebras Part I ,J.Mult. Valued Logic Soft Comput.12 (2006), 71–130.
- [10] A.Iorgulescu, Classes of pseudo-BCK algebras Part II, J.Mult. Valued Logic Soft Comput.12 (2006), 575–629.
- [11] Y.B.Jun, Characterizations of Noetherian BCK-algebras via fuzzy ideals Fuzzy Sets and Systems 108 (1999), 231–234.
- [12] Y.B.Jun, Characterizations of pseudo-BCK algebras Sci.Math.Jpn.57 (2003), 265–270.
- [13] Y.B.Jun, H.S.Kim, J.Neggers, On pseudo-BCI ideals of pseudo BCI-algebras Mat. Vesnik 58 (2006), 39–46.
- [14] J.Meng, X.Guo, On fuzzy ideals in BCK/BCI-algebras Fuzzy Sets and Systems 149 (2005), 509–525.
- [15] J.Rachůnek, A non-commutative generalization of MV algebras Czechoslovak Math. J.52 (2002), 255–273.
- [16] O.G.Xi,Fuzzy BCK-algebras Math.Japon.36 (1991),935 –942.
- [17] A.Walendziak, Nontrivial BCK/BCI-algebras do not satisfy the fuzzy ascending chain condition Fuzzy Sets and Systems 158 (2007), 922–923.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0034-0001