PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On monoids of injective partial selfmaps almost everywhere the identity

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we study the semigroup (…) of injective partial selfmaps almost everywhere the identity of a set of infinite cardinality (…). We describe the Green relations on (…), all (two-sided) ideals and all congruences of the semigroup (…). We prove that every Hausdorff hereditary Baire topology (…) such that (…) is a semitopological semigroup is discrete and describe the closure of the discrete semigroup (…) in a topological semigroup. Also we show that for an infinite cardinal (…) the discrete semigroup (…) does not embed into a compact topological semigroup and construct two non-discrete Hausdorff topologies turning (…) into a topological inverse semigroup.
Wydawca
Rocznik
Strony
699--722
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
autor
  • Department Of Mechanics And Mathematics Ivan Franko Lviv National University Universytetska 1 Lviv, 79000, Ukraine, chuchman i@mail.ru
Bibliografia
  • [1] T. Banakh, S. Dimitrova, Openly factorizable spaces and compact extensions of topological semigroup, Comment. Math. Univ. Carol. 51(1) (2010), 113–131 (arXiv: 0811.4272).
  • [2] A. A. Beǐda, Continuous inverse semigroups of open partial homeomorphisms, Izv. Vyssh. Uchebn. Zaved. Mat. 1 (1980), 64–65 (in Russian).
  • [3] J. H. Carruth, J. A. Hildebrant, R. J. Koch, The Theory of Topological Semigroups, Vol. I, Marcel Dekker, Inc., New York and Basel, 1983; Vol. II, Marcel Dekker, Inc., New York and Basel, 1986.
  • [4] I. Ya. Chuchman, O. V. Gutik, Topological monoids of almost monotone, injective co-finite partial selfmaps of positive integers, Carpathian Mathematical Publications 2(1) (2010), 119–132 (arXiv:1006.4873).
  • [5] A. H. Clifford, G. B. Preston, The Algebraic Theory of Semigroups, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961; Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.
  • [6] J. Colmez, Sur les espaces précompacts, C. R. Acad. Sci. Paris 233 (1951), 1552–1553.
  • [7] R. Engelking, General Topology, 2nd ed., Heldermann, Berlin, 1989.
  • [8] E. Hewitt, K. A. Roos, Abstract Harmonic Analysis, Vol. 1, Springer, Berlin, 1963.
  • [9] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove and D. S. Scott, Continuous Lattices and Domains, Cambridge Univ. Press, Cambridge, 2003.
  • [10] I. I. Guran, Topology of an infinite symmetric group and condensation, Comment. Math. Univ. Carolin. 22(2) (1981), 311–316 (in Russian).
  • [11] O. Gutik, J. Lawson, D. Repovš, Semigroup closures of finite rank symmetric inverse semigroups, Semigroup Forum 78(2) (2009), 326–336.
  • [12] O. V. Gutik, K. P. Pavlyk, On topological semigroups of matrix units, Semigroup Forum 71(3) (2005), 389–400.
  • [13] O. Gutik, K. Pavlyk, A. Reiter, Topological semigroups of matrix units and countably compact Brandt λ0-extensions, Mat. Stud. 32(2) (2009), 115–131.
  • [14] O. V. Gutik, A. R. Reiter, Symmetric inverse topological semigroups of finite rank 6 n, Mat. Metody i Fiz.-Mekh. Polya 53(3) (2009), 7–14.
  • [15] O. Gutik, A. Reiter, On semitopological symmetric inverse semigroups of a bounded finite rank, Visnyk Lviv Univ. Ser. Mech.-Math. 72 (2010), 94–106 (in Ukrainian).
  • [16] O. Gutik, D. Repovš, Topological monoids of monotone, injective partial selfmaps of N having cofinite domain and image, Studia Sci. Math. Hungar. 48(3) (2011), 342–353.
  • [17] J. M. Howie, Fundamentals of Semigroup Theory, London Math. Soc. Monographs, New Ser. 12, Clarendon Press, Oxford, 1995.
  • [18] A. Karras, D. Solitar, Some remarks on the infinite symmetric groups. Math. Z. 66 (1956), 64–69.
  • [19] S. D. Orlov, Topologization of the generalized group of open partial homeomorphisms of a locally compact Hausdorff space, Izv. Vyssh. Uchebn. Zaved. Mat. 11(150) (1974), 61–68 (in Russian).
  • [20] S. D. Orlov, On the theory of generalized topological groups, Theory of Semigroups and its Applications, Saratov Univ. Press. 3 (1974), 80–85 (in Russian).
  • [21] M. Petrich, Inverse Semigroups, John Wiley & Sons, New York, 1984.
  • [22] L. S. Pontryagin, Topological Groups, Gordon & Breach, New York ets, 1966.
  • [23] W. Ruppert, Compact Semitopological Semigroups: An Intrinsic Theory, Lecture Notes in Mathematics, Vol. 1079, Springer, Berlin, 1984.
  • [24] S. Subbiah, The compact-open topology for semigroups of continuous selfmaps, Semigroup Forum 35(1) (1987), 29–33.
  • [25] V. V. Wagner, Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119–1122 (In Russian).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0033-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.