Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The dual category with respect to the category of differential groups is defined and investigated. The objects of this category are algebras, called Hopf-Sikorski (H-S) algebras, the axioms of which combine the axioms of Sikorski's algebras with modified axiomas of Hopf algebras. Morphisms of this category are structural mappings corresponding to Hopf algebras that are smooth in the sense of Sikorski. As an example, we discuss the H-S algebra of the Lorentz group.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
213--221
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
autor
- Ul. Powstańców Warszawy 13/94 33 110 Tarnów, Poland
autor
- Department of Mathematics and Information Science Warsaw University of Technology Plac Politechniki 1 00 661 Warsaw, Poland
autor
- Department of Mathematics and Information Science Warsaw University of Technology Plac Politechniki 1 00 661 Warsaw, Poland
autor
- Department of Mathematics and Information Science Warsaw University of Technology Plac Politechniki 1 00 661 Warsaw, Poland
Bibliografia
- [1] S.Majid, Foundations of Quantum Group Theory Cambridge University Press, Cambridge, 1995.
- [2] J.Nestruev, Smooth Manifolds and Observables, Graduate Texts in Mathematics, Vol. 220, Springer, 2002.
- [3] P.Multarzyński, Z.Pasternak-Winiarski, Differential groups and their Lie algebra, Demonstratio Math. 24 (2001), 515–537.
- [4] Z.Pasternak-Winiarski, Differential groups of class D0 and standard charts, Demonstratio Math. 16 (1981), 503–517.
- [5] R.Sikorski, Abstract covariant derivative, Colloq. Math. 18 (1967), 252–272.
- [6] R.Sikorski, Differential modules, Colloq. Math. 24 (1971), 45–70.
- [7] K.Spallek, Zur Klassifikacion differenzierbaren Gruppen, Manuscripta Math. 11 (1974), 345–357.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0033-0002