PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Equational bases for p-compatible identities

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A number of syntactical properties of identities, such as regularity, nor- mality, k-normality, externality and P-compatibility of identities have been extensively studied. We develop here a technique for producing from a basis for a variety V with certain idempotent terms a basis for the variety P(V), the smallest P-compatible variety to contain V. When V is finitely based, so is P(V).
Słowa kluczowe
Wydawca
Rocznik
Strony
511--518
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
Bibliografia
  • [1] G. Grätzer, Universal Algebra, Second edition, Springer-Verlag, New York, Heidelberg, Berlin, 1979.
  • [2] I. Chajda, Normally presented varieties, Algebra Universalis 34 (1995), 327–335.
  • [3] I. Chajda, K. Denecke, S. L. Wismath, A characterization of P-compatible varieties, Algebra Colloq. 14 no. 2 (2007), 191–206.
  • [4] I. Chajda, S. L. Wismath, Externalization of lattices, Demonstratio Math. 29 (2006), 731–736.
  • [5] V. Cheng, S. L. Wismath, Bases for the k-normalizations of varieties of bands, Demonstratio Math. 40 (2007), 775–787.
  • [6] W. Chromik, Externally compatible identities of algebras, Demonstratio Math. 23 (1990), 345–355.
  • [7] K. Denecke, S. L. Wismath, A characterization of k-normal varieties, Algebra Universalis 51 (2004), 395–409.
  • [8] E. Graczyńska, On normal and regular identities, Algebra Universalis 27 (1990), 387–397.
  • [9] K. Hałkowska, Equational theories of varieties defined by P-compatible identities, Zeszyty Nauk. Uniw. Opol. Mat. 29 (1995), 63–68.
  • [10] K. Hałkowska, Free algebras over P-compatible varieties, General algebra and discrete mathematics (Potsdam, 1993), 131–136, Res. Exp. Math., 21, Heldermann, Lemgo, 1995.
  • [11] K. Hałkowska, A presentation theorem for algebras from varieties defined by P-compatible identities, General algebra and applications (Potsdam, 1992), 121-125, Res. Exp. Math., 20, Heldermann, Berlin, 1993.
  • [12] I. I. Mel’nik, Nilpotent shifts of varieties, (in Russian), Mat. Zametki 14 No. 5 (1973). English translation in: Math. Notes 14 (1973), 962–966.
  • [13] R. Padmanabhan, Regular identities in lattices, Trans. Amer. Math. Soc. 158 (1971), 179–188.
  • [14] P. Penner, Regular identities of pseudo-complemented lattices, Algebra Colloq. 7:4 (2000), 391–400.
  • [15] P. Penner, S. L. Wismath, Equational bases for k-normal identities, Demonstratio Math. 41 (2008), 733–742.
  • [16] J. Płonka, On a method of construction of abstract algebras, Fund. Math. 61 (1967), 183–189.
  • [17] J. Płonka, P-compatible identities and their applications to classical algebras, Math. Slovaca 40 (1990), 21–30.
  • [18] J. Płonka, On equational classes of abstract algebras defined by regular equations, Fund. Math. 64 (1969), 241–247.
  • [19] J. Płonka, On varieties of algebras defined by identities of some special forms, Houston J. of Math. 14 (1988), 253–263.
  • [20] A. Romanowska, Some varieties of algebras defined by externally compatible identities, Demonstratio Math. 20 (1987), 109–119.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0032-0015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.