PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The range of non-atomic measures on effect algebras

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper deals with the study of superior variation m+, inferior variation m¯ and total variation |m| of an extended real-valued function m defined on an effect algebra L; having obtained a Jordan type decomposition theorem for a locally bounded real-valued measure m defined on L, we have observed that the range of a non-atomic function m defined on a D-lattice L is an interval (—m¯ (1), m+(1)). Finally, after introducing the notion of a relatively non-atomic measure on an effect algebra L, we have proved an analogue of Lyapunov convexity theorem for this measure.
Wydawca
Rocznik
Strony
497--510
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
autor
autor
  • Department of Mathematics University of Allahabad Allahabad-211002, India Mailing address: 10 C.S.P. Singh Marg Allahabad-211 001, India, dr.mkhare@gmail.com
Bibliografia
  • [1] S. T. Ali, Stochastic localization, quantum mechanics on phase space and quantum space-time, Nuovo Cimento 8 (11) (1985), 1–128.
  • [2] A. Avallone, A. Basile, On a Marinacci uniqueness theorem for measures, J. Math. Anal. Appl. 286 (2003), 378–390.
  • [3] A. Avallone, A. Basile, P. Vitolo, Positive operators á la Aumann-Shapley on spaces of functions on D-lattices, Positivity 10 (4) (2006), 701–719.
  • [4] G. Barbieri, Liapunov’s theorem for measures on D-posets, Internat. J. Theoret. Phys. 43 (7/8) (2004), 1613–1623.
  • [5] M. K. Bennett, D. J. Foulis, Effect algebras and unsharp quantum logics, Found. Phys. 24 (10) (1994), 1331–1352.
  • [6] E. G. Beltrametti, G. Cassinelli, The Logic of Quantum Mechanics, Addison-Wesley Publishing Co., Reading, Mass, 1981.
  • [7] D. Blackwell, The range of certain vector integrals, Proc. Amer. Math. Soc. 2 (1951), 390–395.
  • [8] J. R. Blum, On relatively non-atomic measures, Proc. Amer. Math. Soc. 12 (3) (1961), 457–459.
  • [9] D. Butnariu, Decompositions and range for additive fuzzy measures, Fuzzy Sets and Systems 10 (1983), 135–155.
  • [10] P. Busch, P. Lahti, P. Mittelstaedt, The Quantum Theory of Measurements, Lecture Notes in Physics, New Series m2, Springer, Berlin, 1991.
  • [11] H. Chernoff, An extension of a result of Liapounoff on the range of a vector measure, Proc. Amer. Math. Soc. 2 (1951), 722–726.
  • [12] J. Diestel, B. Faires, On vector measures, Trans. Amer. Math. Soc. 198 (1974), 253–271.
  • [13] A. Dvurečenskij, S. Pulmannov , New Trends in Quantum Structure, Kluwer Acad. Publ., 2000.
  • [14] A. Dworetzki, A. Wald, J. Wolfowitz, Relations among certain ranges of vector measures, Pacific J. Math. 1 (1) (1951), 59–74.
  • [15] B. Faires, T. J. Morrison, The Jordan decomposition of vector-valued measures, Proc. Amer. Math. Soc. 60 (1976), 139–143.
  • [16] P. Ghirardato, M. Marinacci, Ambiguity made precise : a comparative foundation, J. Econom. Theory 102 (2002), 251–289.
  • [17] P. R. Halmos, The range of a vector measure, Bull. Amer. Math. Soc. 54 (4) (1948), 416–421.
  • [18] F. Kôpka, D-posets of fuzzy sets, Tatra M. Math. Publ. 1 (1992), 83–87.
  • [19] F. Kôpka, F. Chovanec, D-posets, Math. Slovaca 44 (1994), 21–34.
  • [20] M. Khare, Fuzzy σ-algebras and conditional entropy, Fuzzy Sets and Systems 102 (1999), 287–292.
  • [21] M. Khare, The dynamics of F-quantam spaces, Math. Slovaca 52 (4) (2002), 425–432.
  • [22] M. Khare, B. Singh, Weakly tight functions and their decomposition, Internat J. Math. Math. Sci. 18 (2005), 2991–2998.
  • [23] M. Khare, A. K. Singh, Atoms and Dobrakov submeasures in effect algebras, Fuzzy Sets and Systems 159 (2008), 1123–1128.
  • [24] M. Khare, A. K. Singh, Weakly tight functions, their Jordan type decomposition and total variation in effect algebras, J. Math. Anal. Appl. 344 (1) (2008), 535–545.
  • [25] M. Khare, A. K. Singh, Pseudo-atoms, atoms and a Jordan type decomposition in effect algebras, J. Math. Anal. Appl. 344 (1) (2008), 238–252.
  • [26] M. Khare, A. K. Singh, Atoms and a Saks type decomposition in effect algebras, Novi Sad J. Math. 38 (1) (2008), 59–70.
  • [27] A. Liapunoof, Sur les fonctions-vecteurs completement additives, Bull. Acad. Sci. URSS. Ser. Math. 4 (1940), 1–128.
  • [28] J. Lindenstrauss, A short proof of Liapounoff’s convexity theorem, Bull. Math. Mech. 15 (1966), 971–973.
  • [29] G. Ludwig, Foundations of Quantum Mechanics, Vol. I and II, Springer, New York, 1983/1985.
  • [30] G. Ludwig, An Axiometic Basis for Quantum Mechanics, Vol. II, Springer, New York, 1986/1987.
  • [31] E. Pap, Null-additive Set Functions, Kluwer Acad. Publ., Dordrechet, 1995.
  • [32] S. Pulmannová, A remark to orthomodular partial algebras, Demonstraito Math. 27 (1994), 687-699.
  • [33] C. E. Rickart, General Theory of Banach Algebras, Von Nostrand, Princeton, 1960; reprinted R. E. Krieger Huntington, 1974.
  • [34] K. D. Schmidt, A general Jordan decomposition, Arch. Math. 38 (1982), 556–564.
  • [35] K. D. Schmidt, On the Jordan decomposition for vector measures, Lecture Notes in Math., 990, Springer-Verlag, 1983.
  • [36] F. Schroeck, D. J. Foulis, Stochastic quantum mechanics viewed from the language of manuals, Found. Phys. 20 (7) (1990), 823–858.
  • [37] M. P. Solér, Characterization of Hilbert space by orthomoduler spaces, Comm. Algebra 23 (1995), 219-243.
  • [38] H. Suzuki, Atoms of fuzzy measures and fuzzy integrals, Fuzzy Sets and Systems 41 (1991), 329–342.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0032-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.