PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Singularities of pedal curves produced by singular dual curve germs in Sn

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For an n-dimensional spherical unit speed curve r and a given point P, we can define naturally the pedal curve of r relative to the pedal point P. When the dual curve germs are singular, singularity types of pedal curves depend on singularity types of the n-th curvature function germs and the locations of pedal points. In this paper, we investigate sigularity types of pedal curves in such cases.
Słowa kluczowe
Wydawca
Rocznik
Strony
447--459
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
  • Department of Mathematics Faculty of Education and Human Sciences Yokohama National University Yokohama 240-8501, Japan, takashi@edhs.ynu.ac.jp
Bibliografia
  • [1] V. I. Arnol’d, The geometry of spherical curves and the algebra of quaternions, Russian Math. Surveys 50 (1995), 1–68.
  • [2] V. I. Arnol’d, Simple singularities of curves, Proc. Steklov Inst. Math. 226 (1999), 20–28.
  • [3] V. I. Arnol’d, Weak asymptotics for the number of solutions of Diophantine problems, Functional Anal. Appl. 33 (1999), 292–293.
  • [4] V. I. Arnol’d, Frequent representations, Moscow Math. J. 3 (2003), 14.
  • [5] V. I. Arnol’d, Arnold’s Problems, Springer-Verlag Phasis, Berlin, Moscow, 2005.
  • [6] V. I. Arnol’d, S. M. Gusein-Zade, A. N. Varchenko, Singularities of Differentiable Maps I, Monographs in Mathematics 82, Birkhäuser, Boston Basel Stuttgart, 1985.
  • [7] TH. Bröcker, L. C. Lander, Differentiable germs and catastrophes, London Mathematical Society Lecture Note Series 17, Cambridge University Press, Cambridge, 1975.
  • [8] J. W. Bruce, P. J. Giblin, Curves and Singularities (second edition), Cambridge University Press, Cambridge, 1992.
  • [9] M. Golubitsky, V. Guillemin, Stable Mappings and their Singularities, Graduate Texts in Mathematics no. 14, Springer-Verlag, Berlin, 1974.
  • [10] S. Izumiya, Hand-written note on spherical regular curves, 2000.
  • [11] J. Mather, Stability of C∞ mappings, I, The division theorem, Ann. of Math. 87 (1968), 89–104.
  • [12] J. Mather, Stability of C∞ mappings, II, Infinitesimal stability implies stability, Ann. of Math. 89 (1969), 259–291.
  • [13] J. Mather, Stability of C∞ mappings, III. Finitely determined map-germs, Publ. Math. I. H. E. S. 35 (1969), 127–156.
  • [14] J. Mather, Stability of C∞ mappings, IV, Classification of stable map-germs by Ralgebras, Publ. Math. I. H. E. S. 37 (1970), 223–248.
  • [15] J. Mather, Stability of C∞-mappings V. Transversality, Adv. Math. 4 (1970), 301–336.
  • [16] J. Mather, Stability of C∞-mappings VI. The nice dimensions, Lecture Notes in Mathematics 192, C. T. C. Wall (eds.), Springer-Verlag, 1971, 207–253.
  • [17] T. Nishimura, Normal forms for singularities of pedal curves produced by non-singular dual curve germs in Sn, Geom. Dedicata 133 (2008), 59–66.
  • [18] T. Nishimura, A method to investigate TA(f), TL(f) and its applications, RIMS Kôkyûroku 1610 (2008), 84–99.
  • [19] T. Nishimura, A-simple multi-germs and L-simple multi germs, Yokohama Math. J. 55 (2010), 93–104.
  • [20] T. Nishimura, K. Kitagawa, Classification of singularities of pedal curves in S2, The Natural Sciences, Journal of the Faculty of Education and Human Sciences, Yokohama National University 10 (2008), 39–55 (available from http://hdl.handle.net/10131/4067).
  • [21] I. R. Porteous, Geometric Differentiation (second edition), Cambridge University Press, Cambridge, 2001.
  • [22] J. J. Sylvester, Mathematical questions with their solutions, Education Times 41 (1884), 21.
  • [23] C. T. C. Wall, Finite determinacy of smooth map-germs, Bull. London Math. Soc. 13 (1981), 481–539.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0032-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.