PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The geometric genus, the Casson invariant conjecture and splice type singularities

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This is a survey of some results on splice-quotient singularities which are a natural and broad generalization of quasihomogeneous surface singularities with rational homology sphere links. From its topology (i.e., the link or the resolution graph), we can write down the "leading terms" of equations of a splice-quotient singularity, and compute the geometric genus. Applying the formula for the geometric genus, we can verify the Casson invariant conjecture for splice-quotient singularities.
Wydawca
Rocznik
Strony
325--338
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
Bibliografia
  • [1] N. A’Campo, La fonction zêta d’une monodromie, Comment. Math. Helv. 50 (1975), 233–248.
  • [2] S. Boyer, A. Nicas, Varieties of group representations and Casson’s invariant for rational homology 3-spheres, Trans. Amer. Math. Soc. 322 (1990), 507–522.
  • [3] G. Braun, A. Némethi, Surgery formula for Seiberg–Witten invariants of negative definite plumbed 3-manifolds, arXiv:0704.3145.
  • [4] A. H. Durfee, The signature of smoothings of complex surface singularities, Math. Ann. 232 (1978), 85–98.
  • [5] D. Eisenbud, W. D. Neumann, Three-dimensional link theory and invariants of plane curve singularities, Ann. of Math. Stud., vol. 110, Princeton University Press, Princeton, NJ, 1985.
  • [6] R. Fintushel, R. J. Stern, Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. (3) 61 (1990), 109–137.
  • [7] S. Fukuhara, N. Maruyama, A sum formula for Casson’s λ-invariant, Tokyo J. Math. 11 (1988), 281–287.
  • [8] S. Fukuhara, Y. Matsumoto, K. Sakamoto, Casson’s invariant of Seifert homology 3-spheres, Math. Ann. 287 (1990), 275–285.
  • [9] G.-M. Greuel, G. Pfister, H. Schönemann, Singular 3.0, A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern, 2005, http://www.singular.unikl.de.
  • [10] H. Laufer, On μ for surface singularities, Several complex variables, Part 1, Proc. Sympos. Pure Math., Amer. Math. Soc. Transl. Ser. 2 30 (1977), 45–49.
  • [11] H. Laufer, Weak simultaneous resolution for deformations of Gorenstein surface singularities, Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., Amer. Math. Soc. Transl. Ser. 2 40 (1983), 1–29.
  • [12] I. Luengo-Velasco, A. Melle-Hernández, A. Némethi, Links and analytic invariants of superisolated singularities, J. Algebraic Geom. 14 (2005), 543–565.
  • [13] D. Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. 9 (1961), 5–22.
  • [14] A. Némethi, Line bundles associated with normal surface singularities, arXiv:math.AG/0310084.
  • [15] A. Némethi, “Weakly” elliptic Gorenstein singularities of surfaces, Invent. Math. 137 (1999), 145–167.
  • [16] A. Némethi, L. I. Nicolaescu, Seiberg-Witten invariants and surface singularities, Geom. Topol. 6 (2002), 269–328.
  • [17] A. Némethi, T. Okuma, On the Casson invariant conjecture of Neumann–Wahl, arXiv:math.AG/0610465, to appear in J. Algebraic Geom.
  • [18] A. Némethi, T. Okuma, The Seiberg-Witten invariant conjecture for splice–quotients, J. London Math. Soc. (2) 78 (2008), 143–154.
  • [19] W. D. Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), 299–344.
  • [20] W. D. Neumann, Abelian covers of quasihomogeneous surface singularities, Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 40 (1983), 233–243.
  • [21] W. D. Neumann, J. Wahl, The end curve theorem for normal complex surface singularities, arXiv:0804.4644v1.
  • [22] W. D. Neumann, J.Wahl, Casson invariant of links of singularities, Comment. Math. Helv. 65 (1990), 58–78.
  • [23] W. D. Neumann, J. Wahl, Universal abelian covers of surface singularities, Trends in singularities, Trends Math., Birkhäuser, Basel, 2002, pp. 181–190.
  • [24] W. D. Neumann, J. Wahl, Complete intersection singularities of splice type as universal abelian covers, Geom. Topol. 9 (2005), 699–755.
  • [25] W. D. Neumann, J.Wahl, Complex surface singularities with integral homology sphere links, Geom. Topol. 9 (2005), 757–811.
  • [26] T. Okuma, Universal abelian covers of rational surface singularities, J. London Math. Soc. (2) 70 (2004), 307–324.
  • [27] T. Okuma, Universal abelian covers of certain surface singularities, Math. Ann. 334 (2006), 753–773.
  • [28] T. Okuma, The geometric genus of splice-quotient singularities, Trans. Amer. Math. Soc. 360 (2008), 6643–6659.
  • [29] J. Wahl, Equisingular deformations of normal surface singularities, I, Ann. of Math. 104 (1976), 325–365.
  • [30] S. S.-T. Yau, Hypersurface weighted dual graphs of normal singularities of surfaces, Amer. J. Math. 101 (1979), 761–812.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0032-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.