Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work is devoted to the study of a nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping. We show that the weak dissipation producedby the memory term is strong enough to stabilize solutions exponentially. Also, we show that a nonlinear source of polynomial type is able to force solutions to blow up in finite time even in presence of a stronger damping.
Wydawca
Czasopismo
Rocznik
Tom
Strony
67--90
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
- King Fahd University of Petroleum and Minerals Depatment of Mathematics and Statistics Dhahran 31261, Saudi Arabia
autor
- Cheikh El Arbi Tébessi University 12002 Tébessa, Algeria
Bibliografia
- [1] J. A. D. Appleby, M. Fabrizio, B. Lazzari, D. W. Reynolds, On exponential asymptotic stability in linear viscoelasticity, Math. Models Methods Appl. Sci. 16 (2006), 1677–1694.
- [2] A. V. Balakrishnan, L. W. Taylor, Distributed parameter nonlinear damping models for flight structures, in Proceedings “Damping 89”, Flight Dynamics Lab and Air Force Wright Aeronautical Labs, WPAFB, 1989.
- [3] J. Ball, Remarks on blow up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford 28 (1977), 473–486.
- [4] R. W. Bass, D. Zes, Spillover, nonlinearity, and flexible structures, in The Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, NASA Conference Publication 10065 (ed. L. W. Taylor), 1991, 1–14.
- [5] S. Berrimi, S. Messaoudi, Existence and decay of solutions of a viscoelastic equation with a nonlinear source, Nonlinear Anal. 64 (2006), 2314–2331.
- [6] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho, J. A. Soriano, Existence and uniform decay rates for viscoelastic problems with nonlocal boundary damping, Differ. Integral Equ. Appl. 14 (2001), 85–116.
- [7] M. M. Cavalcanti, H. P. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim. 42 (2003), 1310–1324.
- [8] H. R. Clark, Elastic membrane equation in bounded and unbounded domains, Electron. J. Qual. Theory Differ. Equ. 11 (2002), 1–21.
- [9] R. T. Glassey, Blow-up theorems for nonlinear wave equations, Math. Z. 132 (1973), 183–203.
- [10] A. Haraux, E. Zuazua, Decay estimates for some semilinear damped hyperbolic problems, Arch. Ration. Mech. Anal. 100 (1988), 191–206.
- [11] V. K. Kalantarov, O. A. Ladyzhenskaya, The occurrence of collapse for quasilinear equations of parabolic and hyperbolic type, J. Soviet Math. 10 (1978), 53–70.
- [12] V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Res. Appl. Math. vol. 36, Wiley-Masson, Paris/Chichester, 1994.
- [13] M. Kopackova, Remarks on bounded solutions of a semilinear dissipative hyperbolic equation, Comment. Math. Univ. Carolin. 30 (1989), 713–719.
- [14] G. Kirchhoff, Vorlesungen über Mechanik, Tauber, Leipzig (1883).
- [15] M. R. Li, L. Y. Tsai, Existence and nonexistence of global solutions of some systems of semilinear wave equations, Nonlinear Anal. 54 (2003), 1397–1415.
- [16] T. Matsuyama, R. Ikehata, On global solutions and energy decay for the wave equation of Kirchhoff type with nonlinear damping terms, J. Math. Anal. Appl. 204 (1996), 729–753.
- [17] M. Medjden, N.-e. Tatar, On the wave equation with a temporal nonlocal term, Dynam. Systems Appl. 16 (2007), 665–672.
- [18] K. Nishihara, Y. Yamada, On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms, Funkcial. Ekvac. 33 (1990), 151–159.
- [19] M. Nakao, Decay of solutions of some nonlinear evolution equation, J. Math. Anal. Appl. 60 (1977), 542–549.
- [20] K. Ono, Global existence, decay, and blow-up of solutions for some mildly degenerate nonlinear Kirchhoff strings, J. Differential Equations 137 (1997), 273–301.
- [21] K. Ono, On global existence, asymptotic stability and blowing up of solutions for some degenerate nonlinear wave equations of Kirchhoff type with a strong dissipation, Math. Methods Appl. Sci. 20 (1997), 151–177.
- [22] K. Ono, On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. Appl. 216 (1997), 321–342.
- [23] V. Pata, Exponential stability in linear viscoelasticity, Quart. Appl. Math. 64 (2006), 499–513.
- [24] N.-e. Tatar, A. Zaraï, On a Kirchhoff equation with Balakrishnan–Taylor damping and source term, Submitted.
- [25] Y. You, Inertial manifolds and stabilization of nonlinear beam equatons with Balakrishnan–Taylor damping, Abstr. Appl. Anal. 1 (1996), 83–102.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0031-0024