Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we apply a fractional differintegral operator to a class of analytic functions and derive certain new sufficient conditions for the starlikeness of this class of functions. The usefulness of the main results are depicted by deducing several interesting corollaries and relevances with some of the earlier results are also pointed out.
Wydawca
Czasopismo
Rocznik
Tom
Strony
805--813
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
autor
- Department of Mathematics Central University of Rajasthan City Road, Kishangarh - 305802 Distt.-Ajmer, Rajasthan, India, jkp_0007@rediffmail.com
Bibliografia
- [1] J. Dziok, Applications of the Jack lemma, Acta Math. Hungar. 105 (1-2) (2004), 93–102.
- [2] D. J. Hallenbeck, St. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc. 52 (1975), 191–195.
- [3] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755–758.
- [4] Y. Ling, S. Ding, New criterion for starlike functions, Internat. J. Math. Math. Sci. 19 (3) (1996), 613–614.
- [5] S. S. Miller, P. T. Mocanu, O. M. Reade, Subordination- preserving integral operators, Trans. Amer. Math. Soc. 283 (1984), 605–615.
- [6] S. S. Miller, P. T. Mocanu, Differential Subordinations: Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York, 2000.
- [7] P. T. Mocanu, GH. Oros, A sufficient condition for starlikeness of order α, Internat. J. Math. Math. Sci. 28(9) (2001), 557–560.
- [8] S. Owa, On the distortion theorems I, Kyungpook Math. J. 18 (1978), 53–59.
- [9] J. Patel, A. K. Mishra, On certain subclasses of multivalent function associated with an extended fractional differintegral operator, J. Math. Anal. Appl. 332 (2007), 109–122.
- [10] H. M. Srivastava, M. K. Aouf, A certain fractional derivative operator and its applications to new class of analytic and multivalent functions with negative coefficients I, J. Math. Anal. Appl. 171 (1992), 1–13; II, J. Math. Anal. Appl. 192 (1995), 673–688.
- [11] H. M. Srivastava, S. Owa (Eds.), Univalent Function, Fractional Calculus and Their Applications, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons (New York, Chichester, Brisbane, and Toronto), 1989.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0031-0007