PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impulsive partial hyperbolic differential inclusions of fractional order

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we investigate the existence of solutions of a class of partial impulsive hyperbolic differential inclusions involving the Caputo fractional derivative. Our main tools are appropriate fixed point theorems from multivalued analysis.
Wydawca
Rocznik
Strony
775--797
Opis fizyczny
Bibliogr. 53 poz.
Twórcy
autor
autor
Bibliografia
  • [1] S. Abbas, M. Benchohra, Partial hyperbolic differential equations with finite delay involving the Caputo fractional derivative, Commun. Math. Anal. 7 (2009), 62–72.
  • [2] S. Abbas, M. Benchohra, Darboux problem for perturbed partial differential equations of fractional order with finite delay, Nonlinear Anal. 3 (2009), 597–604.
  • [3] R. P Agarwal, M. Benchohra, S. Hamani, A survey on existence result for boundary value problems of nonlinear fractional differential equations and inclusions, Acta. Appl. Math. 109 (3) (2010), 973–1033; DOI 10.1007/s10440-008-9356-6.
  • [4] R. P. Agarwal, M. Benchohra, B. A. Slimani, Existence results for differential equations with fractional order and impulses, Mem. Differential Equations Math. Phys. 44 (2008), 1–1.
  • [5] E. Ait Dads, M. Benchohra, S. Hamani, Impulsive fractional differential inclusions involving the Caputo fractional derivative, Fract. Calc. Appl. Anal. 12 (1) (2009), 15–38.
  • [6] D. D. Bainov, P. S. Simeonov, Systems with Impulse Effect , Ellis Horwood Ltd., Chichister, 1989.
  • [7] A. Belarbi, M. Benchohra, A. Ouahab, Uniqueness results for fractional functional differential equations with infinite delay in Fréchet spaces, Appl. Anal. 85 (2006), 1459–1470.
  • [8] M. Benchohra, J. R. Graef, S. Hamani, Existence results for boundary value problems of nonlinear fractional differential equations with integral conditions, Appl. Anal. 87 (7) (2008), 851–863.
  • [9] M. Benchohra, S. Hamani, S. K. Ntouyas, Boundary value problems for differential equations with fractional order, Surv. Math. Appl. 3 (2008), 1–12.
  • [10] M. Benchohra, J. Henderson, S. K. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, Vol 2, New York, 2006.
  • [11] M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab, Existence results for functional differential equations of fractional order, J. Math. Anal. Appl. 338 (2008), 1340–1350.
  • [12] M. Benchohra, B. A. Slimani, Existence and uniqueness of solutions to impulsive fractional differential equations, Electron. J. Differential Equations 10 (2009), 1–11.
  • [13] H. F. Bohnenblust, S. Karlin, On a theorem of ville, Contribution to the theory of games 155–160, Annals of Mathematics Studies, no. 24. Priceton University Press, Princeton, N. G. 1950.
  • [14] A. Bressan, G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), 69–86.
  • [15] C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics 580, Springer, Berlin-Heidelberg-New York, 1977.
  • [16] Y.-K. Chang, J. J. Nieto, Some new existence results for fractional differential inclusions with boundary conditions, Math. Comput. Model. 49 (2009), 605–609.
  • [17] H. Covitz, S. B. Nadler Jr., Multivalued contraction mappings in generalized metric spaces, Israel J. Math. 8 (1970), 5–11.
  • [18] M. Dawidowski, I. Kubiaczyk, An existence theorem for the generalized hyperbolic equation z′′xy ∈ F(x, y, z) in Banach space, Ann. Soc. Math. Pol. Ser. I, Comment. Math. 30 (1) (1990), 41–49.
  • [19] K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin-New York, 1992.
  • [20] K. Diethelm, A. D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, in: “Scientifice Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties” F. Keil, W. Mackens, H. Voss, and J. Werther (Eds), pp. 217–224, Springer-Verlag, Heidelberg, 1999.
  • [21] K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002), 229–248.
  • [22] M. Frigon, Théeorèmes d’existence de solutions d’inclusions difféerentielles, Topological Methods in Differential Equations and Inclusions (edited by A. Granas and M. Frigon), NATO ASI Series C, Vol. 472, Kluwer Academic Publishers, Dordrecht, 1995, 51–87.
  • [23] A. Fryszkowski, Fixed Point Theory for Decomposable Sets. Topological Fixed Point Theory and its Applications, 2, Kluwer Academic Publishers, Dordrecht, 2004.
  • [24] L. Gaul, P. Klein, S. Kempfle, Damping description involving fractional operators, Mech. Systems Signal Processing 5 (1991), 81–88.
  • [25] W. G. Glockle, T. F. Nonnenmacher, A fractional calculus approach of selfsimilar protein dynamics, Biophys. J. 68 (1995), 46–53.
  • [26] A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
  • [27] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Mathematics and its Applications, 495, Kluwer Academic Publishers, Dordrecht, 1999.
  • [28] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
  • [29] Sh. Hu, N. Papageorgiou, Handbook of Multivalued Analysis, Volume I: Theory, Kluwer, Dordrecht, Boston, London, 1997.
  • [30] Z. Kamont, Hyperbolic Functional Differential Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, 1999.
  • [31] Z. Kamont, K. Kropielnicka, Differential difference inequalities related to hyperbolic functional differential systems and applications, Math. Inequal. Appl. 8 (4) (2005), 655–674.
  • [32] A. A. Kilbas, B. Bonilla, J. Trujillo, Nonlinear differential equations of fractional order in a space of integrable functions, Dokl. Ross. Akad. Nauk 374 (4) (2000), 445–449.
  • [33] A. A. Kilbas, S. A. Marzan, Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Differential Equations 41 (2005), 84–89.
  • [34] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
  • [35] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991.
  • [36] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
  • [37] V. Lakshmikantham, S. Leela, J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009.
  • [38] A. Lasota, Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781–786.
  • [39] V. Lakshmikantham, S. G. Pandit, The Method of upper, lower solutions and hyperbolic partial differential equations, J. Math. Anal. Appl. 105 (1985), 466–477.
  • [40] F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, in “Fractals and Fractional Calculus in Continuum Mechanics”, A. Carpinteri and F. Mainardi (eds), pp. 291–348, Springer-Verlag, Wien, 1997.
  • [41] M. Martelli, A Rothe’s type theorem for non-compact acyclic-valued map, Boll. Un. Mat. Ital. 4 (3), (1975), 70–76.
  • [42] F. Metzler, W. Schick, H. G. Kilian, T. F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys. 103 (1995), 7180–7186.
  • [43] G. Mophou, Existence and uniqueness of mild solutions to impulsive fractional differential equations, Nonlinear Anal. 72 (2010), 1604–1615.
  • [44] A. Ouahab, Existence and uniqueness results for impulsive functional differential equations with scalar multiple delay and infinite delay, Nonlinear Anal. 67 (2007), 1027–1041.
  • [45] S. G. Pandit, Monotone methods for systems of nonlinear hyperbolic problems in two independent variables, Nonlinear Anal. 30 (1997), 235–272.
  • [46] I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999.
  • [47] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.
  • [48] A. M. Samoilenko, N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.
  • [49] N. P. Semenchuk, On one class of differential equations of noninteger order, Differents. Uravn. 10 (1982), 1831–1833.
  • [50] A. A. Tolstonogov, Differential Inclusions in a Banach Space, Kluwer Academic Publishers, Dordrecht, 2000.
  • [51] A. N. Vityuk, Existence of solutions of partial differential inclusions of fractional order, Izv. Vyssh. Uchebn., Ser. Mat. 8 (1997), 13–19.
  • [52] A. N. Vityuk, A. V. Golushkov, Existence of solutions of systems of partial differential equations of fractional order, Nonlinear Oscil. 7 (3) (2004), 318–325.
  • [53] S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron. J. Differential Equations 36 (2006), 1–12.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0031-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.