PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Models for 3D vascular image analysis

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In image processing, models are used to improve robustness of algorithms by introducing a priori knowledge. Deformable models, frequently used in the field of medical images, are described by means of energy functionals with data attachment terms and regularising terms. The regularising terms express constraints relating to the expected shapes. The expected shape of a blood vessel segment in 3D images obtained by Magnetic Resonance Imaging or by helicoidal Computed Tomography is often implicitly described by a generalised cylinder model, i.e. an association of an axis (vessel centreline) and a surface (vessel boundary). In this context, the data attachment terms involve, for candidate points, a measure of the likelihood of being located on the centreline or on the boundary. Such a measure can use models reflecting low-level local photometrical properties of the brightness patterns. This presentation will give an overview of the recently used models and will be illustrated by the authors' contribution.
Twórcy
autor
  • CREATIS UMR CNRS #5515, INSA de Lyon, bât. Blaise Pascal, 7 rue J. Capelle, 69621 Villeurbanne cedex, France
  • CREATIS UMR CNRS #5515, INSA de Lyon, bât. Blaise Pascal, 7 rue J. Capelle, 69621 Villeurbanne cedex, France
Bibliografia
  • [1] Angella F., Lavialle 0. and Baylou P., A deformable and expansible tree for structure recovery, Proc. ICIP, pp. 241-245, Chicago, IEEE, 1998.
  • [2] Bellemare M.E., Haigron P. and Lucas A., Application de la navigation active a la caracterisation automatique de structures anatomiques, Proc. 17e Colloque GRETSI, pp. 1189-1192, Vannes, 1999.
  • [3] Bulpitt A.J., Segmentation of complex anatomical 3D deformable structures using 3D models, Proc. Med. Image Understanding and Analysis, pp. 189-192, Oxford (UK), 1997.
  • [4] Bulpitt A.J. and Berry E., An automatic 3D deformable compared with interactive region growing, Proc. Med. Image Understand. and Analysis, pp. 25-28, Leeds (UK), 1998.
  • [5] Chalopin C., Finet G. and I.E. M., Modeling the 3D coronary tree for labeling purpose, MEDIA, pp. in press, 2001.
  • [6] Chen H. and Hale J., An algorithm for MR angiography image enhancement, MRM, Vol. 33, pp. 534-540, 1995.
  • [7] Chen J., Sato Y. and Tamura S., Orientation space filtering for multiple orientation line segmentation, IEEE Trans. Pattern Analysis Machine Intell., Vol. 22, No. 5, 2000.
  • [8] Chung A.C.S. and Noble J.A., Statistical 3D vessel segmentation using a Rician distribution, Proc. MICCAI, pp. 82-89, Cambridge (UK), Springer Verlag, 1999.
  • [9] Dokladal P., Lohou C., Perroton L. and Bertrand G., Liver blood vessel extraction by a 3D topological approach, Proc. MICCAI, pp. 98-105, Cambridge (UK), Springer Verlag, 1999.
  • [10] Du Y.P. and Parker D.L., Digital vessel enhancement filtering of 3D angiograms using long range signal correlation, Proc. 3rd ISMRM, pp. 581, Nice (France), 1995.
  • [11] Du Y.P., Parker D.L. and Davis W.L., Vessel enhancement filtering in three-dimensional MR angiography, JMRI, Vol. 5, pp. 151-157, 1995.
  • [12] Feldmar J., Malandain G., Ayache N., Fernandez-Vidal S. and Trousset Y., Matching 3D MR angiography data and 2D X-ray angiograms, Proc. CVR Med, pp. 129-138, Grenoble (France), Springer Verlag, 1997.
  • [13] Fernandez-Vidal S. and Malandain G., Squelettes euclidiens d'objets discrets n-dimensionnels, Proc. RFIA, pp. 943-952, Rennes (France), 1996.
  • [14] Flasque N., Desvignes M., Constans J.-M. and Revenu M., Accurate detection of 3D tubular tree structures, Proc. ICIP, pp. 436-439, Vancouver (Canada), 2000.
  • [15] Frangi A.F., Niessen W.J., Hoogeveen R.M., van Walsum T. and Viergever M.A., Model-based quantitation of 3D magnetic resonance angiographic images, IEEE Trans. Med. Imaging, Vol. 18, No. 10, pp. 946-956, 1999.
  • [16] Frangi A.F., Niessen W.J., Hoogeveen R.M., van Walsum T. and Viergever M.A., Quantitation of vessel morphology from 3D MRA, Proc. MICCAI, pp. 358-367, Cambridge (UK), Springer Verlag, 1999.
  • [17] Frangi A.F., Niessen W.J., Nederkoorn P.J., Elgersma O.E.H. and Viergever M.A., Three-dimensional model-based stenosis quantification of the carotid arteries from contrast-enhanced MR angiography, Proc. Mathematical Methods in Biomedical Image Analysis, pp. 110-118, Hilton Head Island, South Carolina (USA), IEEE Computer Society press, 2000.
  • [18] Frangi A.F., Niessen W.J., Vincken K.L. and Viergever M.A., Multiscale vessel enhancement filtering, Proc. MICCAI, pp. 130-137, Cambridge, MA (USA), 1998.
  • [19] Gerig G., Koller T., Szekely G., BrechbLihler C. and Kiibler 0., Segmentation and symbolic description of cerebral vessel structure, based on MR angiography volume data, Proc. CAR, pp. 359-365, Berlin, Springer Verlag, 1993.
  • [20] Hanka R., Ip H.H.S. and Tang H.Y., Computerised analysis of aortic distensibility on computed tomography, Proc. Current Perspectives in Healthcare Computing, Harrogate, 1997.
  • [21] Hernandez-Hoyos M., Anwander A., Orkisz M., Roux J.-P., Douek P.C. and Magnin I.E., A deformable vessel model with single point initialization for segmentation, quantification and visualization of blood vessels in 3D MRA, Proc. MICCAI, pp. 735-745, Pittsburgh, PA (USA), 2000.
  • [22] Hernandez-Hoyos M., Orkisz M., Roux J.-P. and Douek P., Inertia-based vessel axis extraction and stenosis quantification in 3D MRA images, Proc. Computer Assisted Radiology and Surgery, pp. 189-193, Paris (France), 1999.
  • [23] Hoogeveen R.M., Bakker C.J.G. and Viergever M.A., Limits to the accuracy of vessel diameter measurement in MRA, JMRI, Vol. 8, No. 6, pp. 1228-1235, 1998.
  • [24] Hu X., Alperin N., Levin D.N., Tan K.K. and Mengeot M., Visualisation of MR angiography data with segmentation and volume-rendering techniques, JMRI, Vol. 1, pp. 539-546, 1991.
  • [25] Krissian K., Malandain G. and Ayache N., Model based multiscale detection and reconstruction of 3D vessels, Report # 3442, INRIA, Sophia Antipolis (France), 1998.
  • [26] Krissian K., Malandain G., Ayache N., Vaillant R. and Trouuset Y., Model based multiscale reconstruction of 3D vessels, Proc. CVPR, pp. 722-727, Santa Barbara, CA, IEEE, 1998.
  • [27] Kutka R. and Stier S., Extraction of line properties based on direction fields, IEEE Trans. Med. Imaging, Vol. 15, No. 1, pp. 51-58, 1996.
  • [28] Ladak H.M., Milner J.S. and Steinman D.A., Rapid three-dimensional segmentation of the carotid bifurcation from serial MR images, J. Biomech. Engineering, Vol. 112, pp. 96-99, 2000.
  • [29] Li L., Mao F., Qian W. and Clarke L.P., Wavelet transform for directional feature extraction in medical imaging, Proc. ICIP, pp. 500-503, Sta Barbara, CA (USA), 1997.
  • [30] Loock T., Westin C.F., Haglund L., Wigstrom L., Sjoquist L. and Knutsson H., Multidimensional adoptive filtering of 3D MRA data, Proc. 3rd ISMRM, pp. 716, Nice (France), 1995.
  • [31] Lorenz C., Carlsen I.-C., Buzug T.M., Fassnacht C. and Weese J., Multiscale line segmentation with automatic estimation of width, contrast and tangential direction in 2D and 3D medical images, Proc. CVR Med, pp. 233-242, Grenoble (France), Springer Verlag, 1997.
  • [32] Lorigo L.M., Faugeras 0., Grimson W.E.L., Keriven R., Kikinis R. and Westin C.-F., Co-dimension 2 geodesic active contours for MRA segmentation, Proc. Int. Conf. Informations Processing Med. Imaging, Visegrad (H), Springer Verlag, 1999.
  • [33] Masutani Y., Schiemann T. and Mime K.-H., Vascular shape segmentation and structure extraction using a shape-based region growing model, Proc. MICCAI, pp. 1242-1249, Cambridge, MA (USA), 1998.
  • [34] McInerney T. and Terzopoulos D., Deformable models in medical image analysis : a survey, Med. Image Analysis, Vol. 1, No. 2, pp. 91-108, 1996.
  • [35] McInerney T. and Terzopoulos D., Medical image segmentation using topologically adaptable surfaces, Proc. CVR Med, pp. 23-32, Grenoble (France), Springer Verlag, 1997.
  • [36] Orkisz M., Bresson C., Magnin I.E., Champin 0. and Douek P.C., Improved vessel visualization in MR angiography by non-linear anisotropic filtering, Magnetic Resonance in Medicine, Vol. 37, pp. 914-919, 1997.
  • [37] Orkisz M., Hernandez-Hoyos M., Douek P. and Magnin I., Advances of blood vessel morphology analysis in 3D magnetic resonance images, Machine Graphics & Vision, Vol. 9, No. 1/2, pp. 463-471, 2000.
  • [38] Pasquignon D., Calcul du squelette par equation aux derivees partielles, Proc. RFIA, pp. 934-942, Rennes (France), 1996.
  • [39] Prinet J., Monga O. and Ma D.S., Extraction of vascular network in 3D images, Proc. ICIP, pp. 307-310, Lausanne (Switzerland), 1996.
  • [40] Prinet V., Monga O. and Rocchisani J.-M., Vessel representation in 2D and 3D angiograms, Proc. CAR, pp. 240-245, Berlin, Elsevier, 1997.
  • [41] Rueckert D. and Burger P., A multiscale approach to contour fitting for MR images, Proc. Med. Imaging Image Processing, Newport Beach, SPIE, 1996.
  • [42] Rueckert D. and Burger P., Shape-based tracking and analysis of the aorta in cardiac MR images using geometrically deformable templates, Proc. CAR, pp. 26-29, Paris (France), 1996.
  • [43] Rueckert D., Burger P., Forbat S.M., Mohiaddin R.D. and Yang G.Z., Automatic tracking of the aorta in cardiovascular MR images using deformable models, IEEE Trans. Med. Imaging, Vol. 16, No. 5, pp. 581-590, 1997.
  • [44] Sato Y., Nakajima S., Atsumi H., Koller T., Gerig G., Yoshida, S. and Kikinis, R., 3D multiscale line filter for segmentation and visualization of curvilinear structures in medical images, Proc. CVR Med, pp. 213-222, Grenoble (France), Springer Verlag, 1997.
  • [45] Sato Y., Nakajima S., Shiraga N., Atsumi H., Yoshida, S., Koller T., Gerig G. and Kikinis, R., 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images, Med. Image Analysis, Vol. 2, No. 2, pp. 143-168, 1998.
  • [46] Sauret V., Goatman K.A., Fleming J.S. and Bailey A.G., 3D topology and morphology of branching networks using computed tomography (CT) - application to the airway tree, Proc. Medical Image Understanding and Analysis, Oxford (UK), 1999.
  • [47] Shafer S.A., Shadows and Silhouettes in Computer Vision, Kluwer Academic Publishers, Boston, 1985.
  • [48] Staib L.H. and Duncan J.S., Boundary finding with parametrically deformable models, IEEE Pattern Analysis Machine Intell., Vol. 14, No. 11, pp. 1061-1075, 1992.
  • [49] Stern C., Wildermuth S., Weissmann J., Stucki P., Hilfiker, P. and Debatin, J.F., Interactive definitione of endoluminal aortic stent size and morphology based on virtual angioscopic rendering of 3D MRA, Proc. CARs, pp. 176-180, Paris (France), 1999.
  • [50] Swift R.D., Ramaswamy K. and Higgins W.E.. Adaptive axes-generation algorithm for 3D tubular structures. Proc. ICIP, pp. 136-139, Sta Barbara, CA (USA), 1997.
  • [51] Vandermeulen D., Delaere D., Suetens P., Bosmans M. and Marchal G., Local filtering and global optimizatrion methods for 3D magnetic resonance angiography (MRA) image enhancement, Proc. Visualization in Biomedical Computing, pp. 274-288, Chapel Hill, NC (USA), SP1E, 1992.
  • [52] Verdonck B., Bloch J.. Maitre H., Vandermeulen D., Suetens P. and Marchal G., Accurate segmentation of blood vessels from 3D medical images. Proc. ICIP, pp. 311-314, Lausanne (Switzerland), 1996.
  • [53] Verdonck B., Bloch J., Maitre H., Vandermeulen D., Suetens P. and Marchal G., Blood vessel segmentation and visualization in 3D MRA and spiral CT angiography. Proc. CAR, pp. 177-182, Berlin. Springer Verlag, 1995.
  • [54] Wilson D.L. and Noble J.A., Segmentation of cerebral vessels and aneurysms from MR angiography data, Proc. 15th Int.Conf. Information Processing in Med. Imaging. pp. 423-428, Springer Verlag, 1997.
  • [55] Wilson L.S., Brown S.F., Young J.A., Li R. and Brandt L., Three-dimensional computer models of abdominal aortic aneurysms by knowledge-based segmentation. Proc. CARS, pp. 213-217, Paris (France), 1999.
  • [56] Wink O., Niessen S.J. and Viergever M.A., Minimum cost path determination using a simple heuristic function, Proc. ICPR, Vol. 3, pp. 1010-1013, Barcelona. 2000.
  • [57] Wink O., Niessen W.J. and Viergever M.A., Fast quantification of abdominal aortic aneurysums from CTA volumes, Proc. MICCAI, pp. 138-145. Cambridge. MA (USA), 1998.
  • [58] Wink O., Niessen W.J. and Viergever M.A., Fast delineation and visualization of vessel in 3D angiography images, IEEE Trans. Med. Imaging, Vol. 19, No. 4, pp. 337-346. 2000.
  • [59] Wink O., Niessen W.J., Weyer J.J. and Broeders 1.A.J.M., Semi-automated quantification and segmentation abdominal aorta aneurysins from CTA volumes, Proc. CARS. pp. 208-212, Paris (France), 1999.
  • [60] Zahlten C., Jurgens H. and Peitgen Reconstuction of branching blood vessel from CT data. Proc. Visualization in Scient. Comput., pp. 41-52, 1994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0030-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.