PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza i synteza systemów sterowania głosowego w zautomatyzowanym wytwarzaniu

Autorzy
Identyfikatory
Warianty tytułu
EN
Analysis and synthesis of industrially oriented voice control systems
Języki publikacji
PL
Abstrakty
PL
Głównym celem badań opisanych w niniejszej pracy jest opracowanie struktury oraz zasad działania systemu sterowania głosowego, charakteryzującego się takim poziomem niezawodności i funkcjonalności, aby możliwe było jego zastosowanie w praktyce przemysłowej w zautomatyzowanym wytwarzaniu. Postawione zostało pytanie: dlaczego systemy takie nie zostały dotąd zaimplementowane? W szczególności zaś: jakie są ograniczenia i niedoskonałości istniejących algorytmów rozpoznawania mowy i przetwarzania języka naturalnego? W przeciwieństwie do innych opracowań, położony został nacisk na specyfikę przetwarzania komend głosowych służących do sterowania robotami przemysłowymi i maszynami technologicznymi. Przeprowadzona została dogłębna analiza funkcji systemu sterowania głosowego. Analiza ta była ściśle powiązana z obszernym przeglądem literatury opisującej rozwiązania dotyczące rozpoznawania mowy i przetwarzania języka naturalnego. Jej celem było m.in. określenie stopnia przydatności tych rozwiązań do sterowania głosowego w zautomatyzowanym wytwarzaniu. Kolejny etap stanowi synteza, wyróżniająca się całościowym, systemowym podejściem do tematu przetwarzania komend głosowych. Uwzględnia ona prawie wszystkie aspekty przetwarzania tych komend i - co najważniejsze - również ich wzajemne związki. W efekcie opracowane zostały szczegółowe zasady, według których powinien funkcjonować przemysłowy system sterowania głosowego. Jeśli chodzi o aspekt utylitarny, to powstało w ten sposób narzędzie służące do szybkiego i łatwego generowania przemysłowych systemów sterowania głosowego, dostosowanych do konkretnych zestawów maszyn i urządzeń oraz do konkretnych zadań produkcyjnych. Zrealizowana z pomocą tego narzędzia aplikacja laboratoryjna jest - według wiedzy autora - najbardziej obecnie zaawansowanym, funkcjonującym, przemysłowo zorientowanym systemem sterowania głosowego bazującym na komendach w języku ąuasi-naturalnym. Ponadto w niniejszej pracy zaprezentowano nowatorskie rozwiązania dotyczące zdalnego sterowania głosowego maszynami i urządzeniami wchodzącymi w skład zautomatyzowanych systemów wytwarzania. Zostały opracowane (oraz laboratoryjnie zweryfikowane) zasady funkcjonowania bazującego na Internecie systemu sterowania głosowego. Według opinii autora, może to się przyczynić do rozwoju nowej dziedziny badań.
EN
The purpose of research presented in this work was to develop the structure and principles governing the functioning of an industrially oriented voice control system that would be functional and reliable enough to be applied in the industrial practice. The following questions have been asked: why have voice control systems not been used in the industry yet? What are the limitations of existing speech recognition and language processing algorithms? Unlike some other works, this research has focused on the specific requirements that have to be fulfilled by voice command processing systems in the industrial environment. An in-depth analysis of voice control system functioning has been performed. It involved a comprehensive survey of literature related to speech recognition and natural language processing. The aim of this survey was to evaluate the usefulness of existing solutions for industrially oriented voice control systems. The next step consisted in performing the synthesis based on the holistic and systemic approach to the voice command processing. It took into consideration almost all aspects of voice command processing and, what is very important, their mutual influence. In this way, detailed rules of industrially oriented voice control system functioning have been elaborated. A practical result of this research is a generic tool for the fast development of voice control applications that could be employed in individual automated manufacturing systems. With the help of this tool, the voice control system for a robotized manufacturing cell has been developed, implemented, and practically verified in the laboratory. As far as the author is aware, it is the most advanced operational, industrially oriented voice control system based on commands in a quasi-natural language. Moreover, this work presents novel solutions related to remote voice control of automated manufacturing systems. The principles of Internet-based voice control have been elaborated. In the author's opinion, this may potentially open up a new domain for research.
Rocznik
Tom
Strony
3--140
Opis fizyczny
Bibliogr. 126 poz., rys., tab.
Twórcy
autor
  • Instytut Technik Wytwarzania
Bibliografia
  • 1. Aktan B. i in.: Distance learning applied to control engineering laboratories. IEEE Transactions on Education 39(3), 1996, s. 320-326.
  • 2. Alex J., Vikramaditya B., Nelson B.: Teleoperated micromanipulation within a VRML environment using Java. IEEE/RSJ International Conference on Intelligent Robots and Systems, British Columbia, 1998, s. 1747-1752.
  • 3. Alvares A., Ferreira J.: WebTuming: Teleoperation of a CNC turning center through the Internet. Journal of Materials Processing Technology 179,2006, s. 251-259.
  • 4. Asoh H. i in.: Jijo-2: an office robot that communicates and learns. IEEE Intelligent Systems 16(5), 2001, s. 46-55. DOI: 10.1109/5254.956081
  • 5. Ayres T., Nolan B.: Voice activated command and control with speech recognition over WiFi. Science of Computer Programming 59(1-2), 2006, s. 109-126. DOI: 10.1016/j.scico.2005.07.007
  • 6. Belotti V.: A client-server architecture for the remote sensing and control of a drilling robot. Measurement 40 (2), 2007, s. 109-122.
  • 7. Będkowski J., Masłowski A.: Cognitive supervision and control of robotic inspection-intervention system. Lecture Notes in Computer Science 6923, 2011, s. 140-149. DOI: 10.1007/978- -3-642-23938-0J5
  • 8. Będkowski J., Masłowski A.: Methodology of control and supervision of web connected mobile robots with CUDA technology application. Journal of Automation, Mobile Robotics and Intelligent Systems 5(2), 2011, s. 3-11.
  • 9. Bos J., Oka T.: A spoken language interface with a mobile robot. Artificial Life and Robotics 11(1), 2007, s. 42-47. DOI: 10.1007/sl0015-006-0397-5
  • 10. Bosch A., Daelemans W.: Improving sequence segmentation learning by predicting trigrams. 9th Conference on Computational Natural Language Learning, Ann Arbor, MI, USA, 2005, s. 80-87.
  • 11. Bugmann G.: Challenges in verbal instruction of domestic robots. ASER’03 1st International Workshop on Advances in Service Robots, Bardolino, Italy, 2003, s. 112-116.
  • 12. Cerisara Ch., Demange S, Haton J.-P.: On noise masking for automatic missing data speech recognition: A survey and discussion. Computer speech and language 21(3), 2007, s. 443-457. DOI: 10.1016/j .csl.2006.08.001
  • 13. Cheng K., Pan P., Harrison D.: Web-based design and manufacturing support systems: implementation perspectives. International Journal of Computer Integrated Manufacturing 14(1), s. 14-27.
  • 14. Chui W., Wright P.: A WWW computer integrated manufacturing environment for rapid prototyping and education. International Journal of Computer Integrated Manufacturing 12(1), 1999, s. 54-60.
  • 15. Chung Ch., Peng Q.: The selection of tools and machines on web-based manufacturing environments. International Journal of Machine Tools and Manufacture 44,2004, s. 317-326.
  • 16. Dong B. i in.: Web service-oriented manufacturing resource applications for networked product development. Advanced Engineering Informatics 22(3), 2008, s. 282-295. DOI: 10.1016/j. aei.2007.08.010
  • 17. Elmisery F., Starzyk J.: A neural network based on sequence learning for speech recognition. International Conference on Computer Engineering and Systems, Cairo, Egypt, 2008, s. 139-142. DOI: 10.1109/ICCES.2008.4772983
  • 18. El-Mounayri H. i in.: A virtual manufacturing laboratory for training and education. ASEE Annual Conference, 2005.
  • 19. Emami A., Jelinek F.: A neural syntactic language model. Machine Learning 60(1-3), 2005, s. 195-227. DOI: 10.1007/s10994-005-0916-y
  • 20. Ferworn A., Roque R., Vecchia I.: MAX: Wireless teleoperation via the World Wide Web. IASTED Conference on Robotics and Applications, Santa Barbara, 1999, s. 158-162.
  • 21. Fidan I., Ghani N.: Acquisition steps of a Remotely Accessible Rapid Prototyping Laboratory. International Journal of Computer Applications in Technology 30(4), 2007, s. 266-272.
  • 22. Fidan I., Ghani N.: Remotely accessible laboratory for rapid prototyping. ASEE Annual Conference, Honolulu, Hawaii, USA, 2007.
  • 23. Flynn R., Jones E.: Robust distributed speech recognition in noise and packet loss condition. Digital Signal Processing 20(6), 2010,1559-1571. DOI: 10.1016/j.dsp.2010.03.009
  • 24. Ge R., Mooney R.: A statistical semantic parser that integrates syntax and semantics. 9th Conference on Computational Natural Language Learning, Ann Arbor, MI, USA, 2005, s. 9-16.
  • 25. Gildea D., Jurafsky D.: Automatic labeling of semantic roles. Computational linguistics 28(3), s. 245-288. D01:10.1162/089120102760275983
  • 26. Giuliani D., Gerosa M., Brugnara F.: Improved automatic speech recognition through speaker normalization. Computer Speech and Language 20(1), 2006, s. 107-123. DOI: 10.1016/ /j.csl.2005.05.002
  • 27. Goldberg K. i in.: Desktop tele-operation via the World Wide Web. IEEE International Conference on Robotics and Automation, 1995, s. 654—659.
  • 28. Gomes L., Bogosyan S.: Current trends in remote laboratories. IEEE Transactions on Industrial Electronics 56(12), 2009, s. 4744-4756.
  • 29. Gomez A. i in.: A robust scheme for distributed speech recognition over loss-prone packet channels. Speech communication 51(4), 2009, s. 390-400. D01:10.1016/j.specom.2008.12.002
  • 30. Gorostiza J., Salichs M.: Teaching sequences to a social robot by voice interaction. The 18th IEEE International Symposium on Robot and Human Interactive Communication, Toyama, Japan, 2009, s. 797-802. DOI: 10.1109/ROMAN.2009.5326334
  • 31. Hoffman G., Breazeal C.: Effects of anticipatory action on human-robot teamwork. Efficiency, fluency and perception of team. ACM/IEEE International Conference on Human-Robot Interaction, New York, NY, USA, 2007, s. 1-8.
  • 32. Huosheng H. i in.: Internet-based robotic systems for teleoperation. International Journal of Assembly Automation 21(2), 2001, s. 143-151.
  • 33. Inaba M. i in.: A platform for robotics research based on the remote-brained robot approach. International Journal of Robotics Research 19(10), 2000, s. 933-954.
  • 34. Ito T., Takeda K., Itakura F.: Analysis and recognition of whispered speech. Speech Communication 45(2), 2005, s. 139-152. D01:10.1016/j.specom.2003.10.005
  • 35. Jelinek E.: Statistical methods for speech recognition. MIT Press, Cambridge, MA, 1997.
  • 36. Jurafsky D., Martin J.: Speech and language processing. An introduction to natural language processing, computational linguistics, and speech recognition. Prentice Hall, Upper Saddle River, New Jersey, 2000.
  • 37. Kasprzak W. i in.: Zastosowanie MRROC++ do budowy układu sterowania robotem zdolnym do werbalnej komunikacji z człowiekiem. Postępy Robotyki, Wydawnictwa Komunikacji i Łączności, Warszawa, 2006.
  • 38. Kasprzak W., Kowalski A.: Analiza sygnału mowy sterowana danymi dla rozpoznawania komend głosowych. Postępy Robotyki. Wydawnictwa Komunikacji i Łączności, Warszawa, 2006.
  • 39. Kasprzak W., Przybysz P.: Stochastic Modelling of Sentence Semantics in Speech Recognition. Advances in Intelligent and Soft Computing 95, 2011, s. 737-746. DOI: 10.1007/978-3-642- 20320-6_75
  • 40. Kawamura K. i in.: Towards a Human-Robot Symbiotic System. Robotics and Computer Integrated Manufacturing 19(6), 2003, s. 555-565. DOI:10.1016/S0736-5845(03)00065-6
  • 41. Kim H.: Speech recognition over IP networks. Automatic Speech Recognition on Mobile Devices and over Communication Networks. Advances in Pattern Recognition, 2008, s. 63-84. DOI: 10.1007/978-1 -84800-143-5_4
  • 42. Kojima T., Ohtani S., Ohashi T.: A manufacturing XML schema definition and its application to a data management system on the shop floor. Robotics and Computer-Integrated Manufacturing 24(4), 2008, s. 545-552. DOI: 10.1016/j.rcim.2007.07.005
  • 43. Koulouri T., Lauria S.: Exploring miscommunication and collaborative behaviour in human- robot interaction. SIGDIAL 2009: the 10th Annual Meeting of the Special Interest Group in Discourse and Dialogue, Queen Mary University of London, 2009.
  • 44. Kulyukin V., Steele A.: Input recognition in voice control interfaces to three-tier autonomous agents. International Lisp Conference, Association of Lisp Users, San Francisco, CA, USA, s. 1338-1343.
  • 45. Kulyukin V., Steele A.: Instruction and action in the three-tiered robot architecture. International Symposium on Robotics and Automation, Toluca, Mexico, 2002.
  • 46. Kulyukin V.: On Natural Language Dialogue with Assistive Robots. 2006 ACM Conference on Human-Robot Interaction, Salt Lake City, Utah, USA, 2006, s. 164-171. DOI: 10.1145/1121241.1121270
  • 47. Kulyukin V.: Talk the Walk: Robotic NLP vs. Human Sublanguage Acquisition. AAAI Spring Symposium on Multidisciplinary Collaboration for Socially Assistive Robotics, Palo Alto, California, USA, 2007, s. 33-35.
  • 48. Kulyukin V.: Human-Robot Interaction Through Gesture-Free Spoken Dialogue. Autonomous Robots 16,2004, s. 239-257. DOI: 10.1023/B:AUR0.0000025789.33843.6d
  • 49. Lan H. i in.: Web-based quotation system for stereolithography parts. Computers in Industry 59(8), 2008, s. 777-785. DOI: 10.1016/j.compind.2008.03.006
  • 50. Lan H., Chin K., Hong J.: Development of a teleservice system for RP service bureaus. Rapid Prototyping Journal 11(2), 2005, s. 98-105. DOI: 10.1108/13552540510589467
  • 51. Lan H.: Web-based rapid prototyping and manufacturing systems: a review. Computers in Industry 60(9), 2009, s. 643-656. DOI: 10.1016/j.compind.2009.05.003
  • 52. Lauria S. i in.: Mobile robot programming using natural language. Robotics and Autonomous Systems 38(3-4), 2002, s. 171-181. DOI: 10.1016/S0921-8890(02)00166-5
  • 53. Lauria S.: Talking to machines: introducing robot perception to resolve speech recognition uncertainties. Circuits, Systems, and Signal Processing 26(4), 2007, s. 513-526. DOI: 10.1007/s00034-007-4005-9
  • 54. Leitao P.: Agent-based distributed manufacturing control: A state-of-the-art survey. Engineering Applications of Artificial Intelligence 22(7), 2009, s. 979-991. DOI: 10.1016/j.engap-pai.2008.09.005
  • 55. Lenz C. i in.: Joint-action for humans and industrial robots for assembly tasks. 17th IEEE International Symposium on Robot and Human Interactive Communication, Munich, Germany, 2008, s. 130-135. DOI: 10.1109/ROMAN.2008.4600655
  • 56. Leon A. i in.: Teaching a robot to perform task through imitation and on-line feedback. Lecture Notes in Computer Science, 7042, 2011, s. 549-556. DOI: 10.1007/978-3-642-25085-9 65
  • 57. Lepratti R.: Advanced human-machine system for intelligent manufacturing. Journal of Intelligent Manufacturing 17(6), 2006, s. 653-666. DOI: 10.1007/sl0845-006-0035-z
  • 58. Liu Q., Shi Y.: Grid manufacturing: a new solution for cross-enterprise collaboration. International Journal of Advanced Manufacturing Technology 36(1-2), 2008, s. 205-212. DOI: 10.1007/s00170-006-0832-8
  • 59. Liu X., Jin Y, Xi J.: Development of a Web-based tele-manufacturing service system for rapid prototyping. Journal of Manufacturing Technology Management 17(3), 2006, s. 303-314. DOI: 10.1108/17410380610648272
  • 60. Lloyd E. i in.: Model-based telerobotics with vision. IEEE International Conference on Robotics and Automation, Albuquerque, NM, USA, 1997, s. 1297-1304.
  • 61. Majewski M., Żurada J.: Sentence recognition using artificial neural networks. Knowledge-Based Systems 21(7), 2008, s. 629-635.
  • 62. Majewski M.: Podstawy budowy inteligentnych systemów interakcji urządzeń technologicznych i ich operatorów. Praca habilitacyjna. Wydawnictwo Uczelniane Politechniki Koszalińskiej, 2010.
  • 63. Mathes M. i in.: SOAP4PLC: Web Services for Programmable Logic Controllers. 17th Euromicro International Conference on Parallel, Distributed and Network-based Processing, Weimar, Germany, 2009, s. 210-219. DOI: 10.1109/PDP.2009.42
  • 64. Matsui T. i in.: Integrated natural spoken dialogue system of Jijo-2 mobile robot for office services. AAAI Conference, Orlando, FL, 1999, s. 621-627.
  • 65. Messing D. i in.: A non-linear efferent-inspired model of the auditory system; matching human confusions in stationary noise. Speech communication 51(8), 2009, s. 668-683. DOI: 10.1016//j.specom.2009.02.002
  • 66. Oka T. i in.: RUNA: a multimodal command language for home robot users. Artificial Life and Robotics 13(2), 2009, s. 455-459. DOI: 10.1007/s 10015-008-0603-8
  • 67. Paek T., Maxwell D.: Improving command and control speech recognition on mobile devices: using predictive user models for language modeling. User Modeling and User-Adapted Interaction 17, 2007, s. 93-117. DOI:10.1007/sll257-006-9021-6
  • 68. Pires J.: Industrial robots programming: building applications for the factories of the future. Springer, New York, USA, 2006.
  • 69. Pires J.: Robot-by-voice: Experiments on commanding an industrial robot using the human voice. Industrial Robot 32(6), 2005, s. 505-511. D01:10.1108/01439910510629244
  • 70. Pires J.: New challenges for industrial robotic cell programming. Industrial Robot 36(1), Emerald Publishing, 2008.
  • 71. Pires J.: The Industrial robot as a human coworker: the role of the speech interfaces. International Conference on Software Development for Enhancing Accessibility and Fighting Info- exclusion, Portugal, 2007.
  • 72. Reed J., Afjeh A.: Developing interactive educational engineering software for the World Wide Web with Java. Computers and Education 30(3-4), 1998, s. 183-194.
  • 73. Ritchey T.: Analysis and synthesis: On scientific method - based on a study by Bernhard Riemann. System Research 8(4), 1991, s. 21-41. DOI: 10.1002/sres.3850080402
  • 74. Rogalski T., Wielgat R.: A concept of voice guided general aviation aircraft. Aerospace Science and Technology 14, 2010, s. 321-328.
  • 75. Rogowski A.: Industrially oriented voice control system. Robotics and Computer-Integrated Manufacturing 28(3), 2012, s. 303-315. DOI: 10.1016/j.rcim.2011.09.010
  • 76. Rogowski A.: Głosowa komunikacja człowiek-maszyna w gniazdach obróbkowych o zróżnicowanym stopniu automatyzacji. Zeszyty Naukowe Politechniki Poznańskiej 15, 2011, s. 131-144.
  • 77. Rogowski A.: Projekt i implementacja systemu programowania i sterowania gniazdem zrobotyzowanym przez Internet. Prace Naukowe Politechniki Warszawskiej. Seria Elektronika 175, 2010, s. 311-320.
  • 78. Rogowski A.: Robotized cell remote control using voice commands in natural language. 15th International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, 2010, s. 383-386.
  • 79. Rosenfeld R.: Two decades of statistical language modeling: where do we go from here? Proceedings of the IEEE 88(8), 2000, s. 1270-1278. DOI: 10.1109/5.880083
  • 80. Saucy P., Mondada F.: KhepOnTheWeb: Open access to a mobile robot on the Internet. IEEE Robotics and Automation Magazine 7(1), 2000, s. 41-47.
  • 81. Savage J. i in.: VIRbot: a system for the operation of mobile robots. Lecture Notes in Computer Science 5001, 2008, s. 512-519. DOI:10.1007/978-3-540-68847-l_55
  • 82. Savage-Carmona J., Billinghurt M., Holden A.: The VirBot: a virtual reality robot driven with multimodal commands. Expert Systems with Applications 15(3-4), 1998, s. 413-419. DOI: 10.1016/S0957-4174(98)00037-2
  • 83. Saygin C., Kahraman F.: A Web-based programmable logic controller laboratory for manufacturing engineering education. International Journal of Advanced Manufacturing Technology 24, 2004, s. 590-598.
  • 84. Schank R.: Dynamic memory. Cambridge University Press, New York, 1980.
  • 85. Schank R.: A conceptual dependency parser for natural language. COLING’69 Proceedings of the 1969 Conference on Computational Linguistics, Stroudsburg, PA, USA, 1969, s. 1-28. DOI: 10.3115/990403.990405
  • 86. Schilling K.: Telediagnosis and teleinspection potential of telematic techniques. Advances in Engineering Software 31(11), 2000, s. 875-879.
  • 87. Schlick C. i in.: Head-mounted display for supervisory control in autonomous production cells. Elsevier Displays 17(3-4), 1997, s. 199-206. D01:10.1016/S0141-9382(96)01036-0
  • 88. Schulz D. i in.: Web interface for mobile robots in public places. IEEE Robotics and Automation Magazine 7(1), 2000, s. 48-56.
  • 89. Shen W., Lang S., Wang L.: iShopFloor: an Internet-enabled agent-based intelligent shop floor. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 35(3), 2005, s. 371-381. DOI: 10.1109/TSMCC.2004.843224
  • 90. Sowa J.: Semantic networks. In: Stuart C. Shapiro “Encyclopedia of Artificial Intelligence”, Wiley, 2nd edition, 1992.
  • 91. Stadermann J., Rigoll G.: Hybrid NN/HMM acoustic modeling techniques for distributed speech recognition. Speech Communication 48(8), 2006, s. 1037-1046. D01:10.1016/j.specom.2006.01.007
  • 92. Stiefelhagen R. i in.: Natural human-robot interaction using speech, head pose and gestures. IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 2004, Vol. 3, s. 2422-2427. DOI: 10.1109/IROS.2004.1389771
  • 93. Sun J. i in.: Natural language understanding through fuzzy logic inference and its application to speech recognition. IEEE International Conference on Fuzzy Systems, Honolulu, HI, USA, 2002, s. 1120-1125. DOI: 10.1109/FUZZ.2002.1006661
  • 94. Sunil V., Pande S.: WebROBOT: Internet based robotic assembly planning system. Computers in Industry 54,2004, s. 191-207.
  • 95. Tan J. i in.: Collaboration Planning by Task Analysis in Human-Robot Collaborative Manufacturing System. Advances in Robot Manipulators, 2010, s. 113-132.
  • 96. Tan J. i in.: Safety design and development of human-robot collaboration in cellular manufacturing. International Conference on Automation Science and Engineering, Bangalore, India, 2009, s. 537-542. DOI: 10.1109/COASE.2009.5234120
  • 97. Tao F. i in.: An approach to manufacturing grid resource service scheduling based on trust-QoS. International Journal of Computer Integrated Manufacturing 22(2), 2009, s. 100-111. DOI: 10.1080/09511920802139875
  • 98. Tenorio-Gonzales A. i in: Dynamic reward shaping: training a robot by voice. 12th Ibero American Conference on Advances in Artificial Intelligence IBERAMIA’10, Berlin, Heidelberg, Niemcy, 2010, s. 483-492.
  • 99. Theobalt C. i in.: Talking to Godot: Dialogue with a mobile robot. IEEE International Conference on Intelligent Robots and Systems, 2002, s. 1338-1343. DOI: 10.1109/IRDS.2002.1043940
  • 100. Tsai M., Lin J.: Web-based distributed manufacturing control systems. International Journal of Advanced Manufacturing Technology 25, 2005, s. 608-618.
  • 101. Valckenaers P. i in.: A benchmarking service for the manufacturing control research community. Journal of Intelligent Manufacturing 17(6), 2006, s. 667-679. DOI: 10.1007/sl0845- -006-0036-y
  • 102. Veiga G., Pires J., Nilsson K.: Experiments with service-oriented architectures for industrial robotic cells programming. Robotics and Computer-Integrated Manufacturing 25(4—5), 2009, s. 746-755. D01:10.1016/j.rcim.2008.09.001
  • 103. Vlaj D. i in.: A computationally efficient mel-filter bank VAD algorithm for distributed speech recognition systems. ASIP Journal on Applied Signal Processing, 2005, s. 487-497. DOI: 10.1155/ASP.2005.487
  • 104. Wald M., Bain K.: Universal access to communication and learning: the role of automatic speech recognition. Universal Access in the Information Society 6(4), 2008, s. 435-447. DOI: 10.1007/s 10209-007-0093-9
  • 105. Wang C., Chu C., Yin C.: Implementation of remote robot manufacturing over Internet. Computers in Industry 45, 2001, s. 215-229.
  • 106. Wang J., Su J., Xi Y.: COM-based software architecture for multisensor fusion system. Information Fusion 2(4), 2001, s. 261-270. DOI:10.1016/S1566-2535(01)00042-2
  • 107. Wang L., Orban P., Cunningham A.: Remote real-time CNC machining for Web-based manufacturing. Robotics and Computer Integrated Manufacturing 20, 2004, s. 563-571. DOI: 10.1016/j .rcim.2004.07.007
  • 108. Wang M., Liu J.: Interactive control for Internet-based mobile robot teleoperation. Robotics and Autonomous Systems 52, 2005, s. 160-179.
  • 109. Wang Y. i in.: Internet-based remote manipulation and monitoring of an industry robot in advanced manufacturing systems. International Journal of Advanced Manufacturing Technology 43, 2009, s. 907-913.
  • 110. Wasfy A., Wasfy T.,Noor A.: Intelligent virtual environment for process training. Advances in Engineering Software 35(6), 2004, s. 337-355. D01:10.1016/j.advengsoft.2004.04.005
  • 111. Weiss A. i in.: Exploring human-robot cooperation possibilities for semiconductor manufacturing. International Conference on Collaboration Technologies and Systems, Philadelphia, PA, USA, 2011, s. 173-177.
  • 112. Winfield A., Holland O.: The application of wireless local area network technology to the control of mobile robots. Microprocessors and Microsystems 23,2000, s. 597-607.
  • 113. Woern H.: Tendenz in der Fabrikautomation und Robotik. Tagungsband der VDI-Konferenz ROBOTIK 2004, VDI/VDE-Gesellschaft fur Mess- und Automatisierungstechnik, VDI-Be- richte 1756, 2004, s. 53-64.
  • 114. Woem H., Laengle T.: Cooperation between human beings and robot systems in an industrial environment. Proceedings of the Mechatronics and Robotics 1,2000, s. 156-165.
  • 115. Xu A. i in.: VRPS-I: an internet-based virtual rapid prototyping system. Journal of Integrated Design and Process Science 9(3), 2005, s. 15-27.
  • 116. Yokota M., Sugita K., Oka T.: Natural language understanding based on mental image description language Lmd and its application to language-centered robot manipulation. Artificial Life and Robotics 13(1), 2008, s. 84-88. DOI: 10.1007/s 10015-008-0564-y
  • 117. You S. i in.: A low-cost internet-based telerobotic system for access to remote laboratories. Artificial Intelligence in Engineering 15(3), 2001, s. 265-279.
  • 118. Zaeh M., Roesel W.: Safety aspects in a human-robot interaction scenario: a human worker is co-operating with an industrial robot. Progress in Robotics 44 (2), 2009, s. 53-62. DOI: 10.1007/978-3-642-03986-7_7
  • Źródła elektroniczne i prasowe
  • 119. Lewis J.: Put on your human-machine interface, Design News, August 19, 2001. http://www. designnews.com/article/14653-Put_on_your_human_machine_interface.php (ostatni dostęp 22.09.2012)
  • 120. Vocal control system developed for the shop floor, American Machinist, 02/17/2006.
  • 121. Talk nicely to your machine, American Machinist 04/20/2006.
  • 122. Strona internetowa Laboratorium Zautomatyzowanej Produkcji, http://www.cim.pw.edu.pl/ arog/glosowe/glosowe3.wmv (ostatni dostęp 22.09.2012)
  • 123. http://support.microsoft.com/kb/306899/EN-US (ostatni dostęp 22.09.2012)
  • 124. http://www.sick.com/pl/pl-pl/home/service/support/Documents/Przewodnik-Bezpieczne_maszyny-Bezpieczna_maszyna_w_6_krokach.pdf (ostatni dostęp 22.09.2012)
  • 125. Beck IPC GmbH http://www.beck-ipc.com/ (ostatni dostęp 22.09.2012)
  • 126. National Instruments Developer Zone http://www.ni.com/white-paper/7350/en (ostatni dostęp 22.09.2012)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0029-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.