PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automatic prolongation recognition in disordered speech using CWT and Kohonen network

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Automatic disorder recognition in speech can be very helpful for the therapist while monitoring therapy progress of the patients with disordered speech. In this article we focus on prolongations. We analyze the signal using Continuous Wavelet Transform with 18 bark scales, we divide the result into vectors (using windowing) and then we pass such vectors into Kohonen network. Quite large search analysis was performed (5 variables were checked) during which, recognition above 90% was achieved. All the analysis was performed and the results were obtained using the authors' program - "WaveBlaster". It is very important that the recognition ratio above 90% was obtained by a fully automatic algorithm (without a teacher) from the continuous speech. The presented problem is part of our research aimed at creating an automatic prolongation recognition system.
Rocznik
Tom
Strony
137--144
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
  • Institute of Computer Science, Maria Curie-Skłodowska University, Marii Curie-Skłodowskiej 1, Lublin, Poland
autor
autor
Bibliografia
  • [1] AKANSU A.N, HADDAD R.A., Multiresolution signal decomposition, Academic Press, 2001.
  • [2] BARRO S., Marin R., Fuzzy Logic in Medicine, Physica-Verlag Heidenberg, New York, 2002.
  • [3] CODELLO I., KUNISZYK-JÓŹKOWIAK W., Wavelet analysis of speech signal, Annales UMCS Informatica, 2007, AI 6, pp. 103-115.
  • [4] CODELLO I., KUNISZYK-JÓŹKOWIAK W., KOBUS A., Kohonen network application in speech analysis algorithm, Annales UMCS Informatica, 2010, (Accepted paper).
  • [5] CODELLO I., KUNISZYK-JÓŹKOWIAK W, SMOŁKA E., KOBUS A., Disordered sound repetition recognition in continuous speech using CWT and Kohonen network, Journal Of Medical Informatics & Technologies, 2011, Vol. 17, pp. 123-130.
  • [6] GARFIELD, S., ELSHAW M., WERMTER S., Self-orgazizing networks for classification learning from normal and aphasic speech, In The 23rd Conference of the Cognitive Science Society, Edinburgh, Scotland, 2001.
  • [7] GOLD, B., MORGAN, N., Speech and audio signal processing, JOHN WILEY & SONS Inc, 2000.
  • [8] GOUPILLAUD P., GROSSMANN A., MORLET J., Cycle-octave and related transforms in seismic signal analysis'', Geoexploration, 1984-1985, Vol. 23, pp. 85-102.
  • [9] HUANG, X., ACERO, A., Spoken Language Processing: A Guide to Theory, Algorithm and System Development, Prentice-Hall Inc., 2001.
  • [10] KOHONEN, T., Self-Organizing Maps, 34:p.2173-2179, 2001.
  • [11] NAYAK J., BHAT P.S., ACHARYA R., AITHAL U.V., Classification and analysis of speech abnormalities, Elsevier SAS, 2005, Vol. 26, No. 5-6, pp. 319-327.
  • [12] SMITH J., ABEL J., Bark and ERB Bilinear Transforms, IEEE Transactions on Speech and Audio Processing, November, 1999.
  • [13] SZCZUROWSKA I., KUNISZYK-JÓŹKOWIAK W., SMOŁKA E., The application of Kohonen and Multilayer Perceptron network in the speech nonfluency analysis, Archives of Acoustics. 2006, Vol. 31 (4 (Supplement)): pp. 205-210.
  • [14] SZCZUROWSKA, I, KUNISZYK-JÓŹKOWIAK W., E. SMOŁKA, Application of Artificial Neural Networks In Speech Nonfluency Recognition, Polish Jurnal of Environmental Studies, 2007, Vol. 16, No. 4A, pp. 335-338.
  • [15] TRAUNMÜLLER H., Analytical expressions for the tonotopic sensory scale, J. Acoust. Soc. Am., 1990, Vol. 88, pp. 97-100.
  • [16] SUSZYŃSKI W., KUNISZYK-JÓŹKOWIAK W., SMOŁKA E., DZIEŃKOWSKI M., Prolongation detection with application of fuzzy logic, Annales Informatica Universitatis Mariae Curie-Skłodowska, 2003, pp. 133-140.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0027-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.