Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Contemporary medicine should provide high quality diagnostic services while at the same time remaining as comfortable as possible for a patient. Therefore novel non-invasive disease recognition methods are becoming one of the key issues in the health services domain. Analysis of data from such examinations opens an interdisciplinary bridge between the medical research and artificial intelligence. The paper presents application of machine learning techniques to biomedical data coming from indirect examination method of the liver fibrosis stage. Presented approach is based on a common set of non-invasive blood test results. The performance of four different compound machine learning algorithms, namely Bagging, Boosting, Random Forest and Random Subspaces, is examined and grid search method is used to find the best setting of their parameters. Extensive experimental investigations, carried out on a dataset collected by authors, show that automatic methods achieve a satisfactory level of the fibrosis level recognition and may be used as a real-time medical decision support system for this task.
Rocznik
Tom
Strony
121--127
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Department of Systems and Computer Networks, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
autor
autor
autor
autor
autor
Bibliografia
- [1] CASTÉRA L., Non invasive assessment of liver fibrosis in chronic hepatitis C. Liver International , Vol. 5, No. 2, 2011, pp. 625-634.
- [2] BioPredictive, http://www.biopredictive.com/intl/physician/fibrotest-for-hcv/view?set_language=pl.
- [3] Simens Medical, http://www.medical.siemens.com/webapp/wcs/stores/servlet/PSGenericDisplay~q_catalogId~e_-111~a_langId~e_-111~a_pageId~e_103713~a_storeId~e_10001.htm.
- [4] EOM S, KIM E. A survey of decision support system applications (1995-2001). J Oper Res Soc 2006;57(11):1264-78.
- [5] GARG AX, ADHIKARI NKJ, MCDONALD H, ROSAS-ARELLANO MP, DEVEREAUX PJ, BEYENE J, SAM J, HAYNES RB. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: A systematic review. J Am Med Assoc 2005;293(10):1223-38.
- [6] ALPAYDIN E., Introduction to Machine Learning. Second edition, The MIT Press, Cambridge, MA, USA, London, UK, 2010.
- [7] WOŹNIAK M. Combining classifiers - concept and applications. Journal of Medical Informatics & Technologies. 2010, Vol. 15, pp. 19-27.
- [8] KRAWCZYK B., WOŹNIAK M. Analysis of Diversity Assurance Methods for Combined Classifiers. Image Processing and Communications Challenges 4, pp. 179-186.
- [9] KRAWCZYK B., WOŹNIAK M. Hypertension diagnosis using compound pattern recognition methods. Journal of Medical Informatics & Technologies. 2011, Vol. 18, pp. 41-50.
- [10] KRAWCZYK B. Classifier committee based on feature selection method for obstructive nephropathy diagnosis; Semantic Methods for Knowledge Management and Communication 2011, Katarzyniak R. et al. (Eds.), Springer, Studies in Computational Intelligence 381:115-125.
- [11] ALPAYDIN, E.: Combined 5 x 2 cv F Test for Comparing Supervised Classification Learning Algorithms, Neural Computation, 11:1885-1892,1998.
- [12] BREIMAN L.: Bagging predictors, Technical Report 421, Department of Statistics, University of California, Berkeley, 1994.
- [13] BREIMAN L.: Random forests, Machine Learning, Volume 45:5–32, 2001.
- [14] BRYLL, R.: Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets, Pattern Recognition 20 (6): 1291–1302, 2003.
- [15] QUINLAN, J.R., Induction of decision trees. Machine Learning, 1(1), pp. 81-106, 1986.
- [16] SCHAPIRE R. E., The boosting approach to machine learning: An overview. Proc. Of MSRI Workshop on Nonlinear Estimation and Classification, Berkeley, CA, 2001.
- [17] Enhanced Liver Fibrosis Test (ELF) for evaluating liver fibrosis, The National Horizon Scanning Centre, Department of Public Health and Epidemiology, University of Birmingham, 2008.
- [18] BEDOSSA P., DARGÈRE D., PARADIS V., Sampling variability of liver fibrosis in chronic hepatitis C, Hepatology 2003, Vol. 38, pp. 1449–1457.
- [19] ORCZYK T., PAŁYS M., PORWIK P., MUSIALIK J., BŁOŃSKA-FAJFROWSKA B., Simple and non-invasive liver fibrosis stage prediction method, Journal of Medical Informatics & Technologies, 2011, Vol. 17, pp. 227-232.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0027-0014