PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Data partitioning based weighted averaging for noise suppression in biomedical signals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the case of biomedical signals with a quasi-cyclic character, such as electrocardiographic signals, the high resolution electrocardiograms or electrical potentials recorded from the nervous system of patients (estimating brain activity evoked by a known stimulus), as a method of averaging in the time domain may be used for noise attenuation. In this paper there is presented input data partitioning applied to a few different methods of weighted averaging. This procedure usually leads to improve the quality of the resulting averaged signal, especially when fuzzy partitioning is used. Below it is presented the computational study of weighted averaging with traditional (sharp) and fuzzy partition of the input data in the presence of non-stationary noise. The performance of presented methods is experimentally evaluated for analytical signal of EN 60601-2-51 (2003), namely ANE20000 ECG record.
Rocznik
Tom
Strony
85--91
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
  • Silesian University of Technology, Institute of Informatics, Akademicka St. 16, 44-100 Gliwice
autor
autor
Bibliografia
  • [1] AUGUSTYNIAK P., Adaptive wavelet discrimination of muscular noise in the ECG, Comput. Cardiol., 2006, Vol. 33, pp. 481-484.
  • [2] BATAILLOU E., THIERRY E., RIX H., MESTE O., Weighted averaging using adaptive estimation of the weights, Signal Process., 1995, Vol. 44, pp. 51-66.
  • [3] BRUCE E.N., Biomedical signal processing and signal modeling. Wiley, New York, 2001.
  • [4] ELBERLING C., DON M., Detecting and assessing synchronous neural activity in the temporal domain, In: BURKARD R.F., EGGERMONT J.J., DON M. (Eds.), Auditory Evoked Potentials - Basic principles and Clinical Application, Lippincott Williams &Wilkins, Philadelphia, 2006, pp. 102-123.
  • [5] FAN Z., WANG T., A weighted averaging method for evoked potential based on the minimum energy principle, Proc. IEEE EMBS Conf., 1991, Vol. 13, pp. 411-412.
  • [6] JANE R., RIX H., CAMINAL P., LAGUNA P., Alignment methods for averaging of high-resolution cardiac signals: a comparative study of performance, IEEE Trans. Biomed. Eng., 1991, Vol. 38, No. 6, pp. 571-579.
  • [7] JEZEWSKI J., HOROBA K., MATONIA A., et al., A new approach to cardiotocographic fetal monitoring based on analysis of bioelectrical signals, Proc. 25th IEEE/EMBS Int. Conf., Cancun, 2003, pp. 3145-3149.
  • [8] KUPKA T., JEZEWSKI J., MATONIA A., et al. Timing events in Doppler ultrasound signal of fetal heart activity, Proc. 26th IEEE/EMBS Int. Conf., San Francisco, 2004, pp. 337-340.
  • [9] MATONIA A., JEZEWSKI M., KUPKA T. et al., The influence of coincidence of fetal and maternal QRS complexes on fetal heart rate reliability, Med. Biol. Eng. Comput., 2006, Vol. 44, pp. 393-403.
  • [10] KOTAS M., Nonlinear projective filtering of ECG signals, In: MELLO C.A.B. (Ed.) Biomedical engineering, InTech, Rijeka, Croatia, 2009, pp. 433–452.
  • [11] LESKI J., New concept of signal averaging in time domain, Proc. IEEE EMBS Conf., 1991, Vol. 13, pp. 367-368.
  • [12] LESKI J., Robust Weighted Averaging, IEEE Trans. Biomed. Eng., Vol. 49, No. 8, pp. 796–804, 2002.
  • [13] MOMOT A., MOMOT M., LESKI J., The Fuzzy Relevance Vector Machine and its Application to Noise Reduction in ECG Signal, J. Med. Inform. Technol., 2005, Vol. 9, pp. 99–106.
  • [14] MOMOT A., MOMOT M., LESKI J., Bayesian and empirical Bayesian approach to weighted averaging of ECG signal, Bull. Pol. Acad. Sci., Technol. Sci., 2007, Vol. 55, No. 4, pp. 341–350.
  • [15] MOMOT A., Methods of weighted averaging of ECG signals using Bayesian inference and criterion function minimization, Biomed. Signal Process. Control, 2009, Vol. 4, pp. 162-169.
  • [16] MOMOT A., Fuzzy Weighted Averaging of Biomedical Signal Using Bayesian Inference, In: CYRAN K.A., et al. (Eds.), Man-Machine Interactions, Advances in Intelligent and Soft Computing, Springer-Verlag, Berlin Heidelberg, 2009, Vol. 59, pp. 133–140.
  • [17] MOMOT A., On application of input data partitioning to Bayesian weighted averaging of biomedical signals. Expert Systems (article first published online: 28 APR 2011) doi=10.1111_j.1468-0394.2011.00597.
  • [18] PAUL J.S., REDDY M.R., KUMAR V.J., A transform domain SVD filter for suppression of muscle noise artefacts in exercise ECG’s, IEEE Trans. Bimed. Eng., 2000, Vol. 47, No. 5, pp. 654–663.
  • [19] SHARMA L. N., DANDAPAT S., MAHANTA A., ECG signal denoising using higher order statistics in Wavelet subbands, Biomed. Signal Process. Control, 2010, Vol. 5, No. 3, pp. 214–222.
  • [20] YAN J., LU Y., LIU, J., WUB X., XU Y., Self-adaptive model-based ECG denoising using features extracted by mean shift algorithm, Biomed. Signal Process. Control, 2010, Vol. 5, No.2, pp. 103–113.
  • [21] ZYWIETZ C., ALRAUN W., FISHER R., Quality assurance in biosignal processing - procedures and recommendations for evaluation for electrocardiological analysis systems, Comput. Cardiol., 2001, Vol. 28, pp. 201–204.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0027-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.