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DATA PARTITIONING BASED WEIGHTED AVERAGING FOR NOISE
SUPPRESSION IN BIOMEDICAL SIGNALS

In the case of biomedical signals with a quasiicycharacter, such as electrocardiographic sigtiaés high
resolution electrocardiograms or electrical potdsatrecorded from the nervous system of patiergtnfating brain
activity evoked by a known stimulus), as a methbdweraging in the time domain may be used foreaitenuation.
In this paper there is presented input data pamtitg applied to a few different methods of weightsreraging. This
procedure usually leads to improve the qualityhsf tesulting averaged signal, especially when fyryitioning is
used. Below it is presented the computational stfdyeighted averaging with traditional (sharp) dneizy partition of
the input data in the presence of non-stationargenoThe performance of presented methods is expetally
evaluated for analytical signal of EN 60601-2-5002), namely ANE20000 ECG record.

1. INTRODUCTION

The presence of interference in biomedical sigmalassociated with the specific acquisition of
these signals. For example in the case of bioatestgnals, which are widely used in most fields of
biomedicine, disturbances may come from the adiumsihardware, a powerline or the bioelectric
activity of body cells. The electric field propagatthrough the tissue and can be acquired fronbdlg
surface, eliminating the potential need to invdueliosystem. However, using surface electrodegtses
in high amplitude of noise and the noise shouldlggpressed to extract a priori desired informaf8jn
Particularly difficult case is when fetal hearteaneasurement is needed. One of the most commonl
used techniques of fetal heart rate measuremeatpglsed Doppler ultrasound method, although the
exact cardiac cycle can be measured only on a bafsielectrical activity signal — the fetal
electrocardiogram [8]. Recording of fetal electmtagram can be accomplished by non-invasive method
where measuring electrodes are placed on matetmddnzen and then the main problem is the
suppression of maternal electrocardiogram, mangdgiaxceeding the useful signal component [7, 9].

There are many approaches to the noise attenyatodrlem while preserving the variability of the
desired signal morphology. One of the possible oughs low-pass filtering such as arithmetic mdan.
is very simple method, the classical band-passrifiif, but also very ineffective because the fregye
characteristics of signal and noise significantherdap. Therefore there are developed other metbbds
noise suppression based on transforming the ingadesof signal and creating a new space with the he
of discrete cosine transform [18] or wavelets tfarms [1], based on fuzzy nonlinear regression [13],
nonlinear projective filtering [10], higher-ordeasistics at different wavelet bands [19] or extegpoints
determination by mean shift algorithm and dynammatel-based nonlinear filtering [20].

In the case of quasi-cyclic biomedical signals,hsas electrocardiographic signals, the high
resolution electrocardiograms or electrical potdstirecorded from the nervous system of patients
(estimating brain activity evoked by a known stiog)| another possible method of noise attenuasion i
the synchronized averaging [6]. The method assuhatthe given biomedical signal is quasi-cyclithwi
the additive noise, which is independent and w#lozmean. Performing averaging could be done by
simple arithmetic mean or its generalization, ngmetighted mean where the weights are tuned by some
adaptive algorithm.
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Traditional arithmetic averaging technique can beduin the case of stationary noise (it is constant
level of power noise throughout the averaging ghritdnfortunately, the physiological noise leveleof
varies in tests, even if strict artifact rejectisrapplied [4] and increasing the input noise lelaing the
averaging process results in increasing the rekithise and deteriorating quality of the averageda.
Thus, using methods of weighted averaging is mtaovdy the reason that most types of noise are not
stationary and the variability of noise power caobserved.

The crucial point in the problem of weighted avénggs estimation of the weights, which may be
solved by numerous approaches, such as methodd baste minimum energy principle [5], Kalman
filter theory [11], adaptive estimation of the wiig [2], criterion function minimization [12] or Basian
inference [14]. In [15], there were published tlesuits of experiments which show supremacy of the
methods using Bayesian inference over the oneg asiterion function minimization with regard totho
the synthetic ECG signal and the real ECG signatelsas with regard to different noise types. 18]
there was presented modification of existing EnspiriBayesian Weighted Averaging method with
extension by partitioning of the input data in tth@e domain and the numerical experiments show
supremacy of the new method over the original Bayesmethod [17].

This paper shortly describes a few weighted avatagiethods and in details how the partition of
the signal is made and how to combine the resultse averaged signal. It is shown that the paniitig
may be performed by using traditional (sharp) azfumembership function and the partition may be
applied to all presented methods. The aim of theeps to study the influence of the type of pamtitand
the number of parts on the resulted signal. Théopeance of the methods is experimentally evaluated
for analytical signal of EN 60601-2-51 (2003), n&§m&NE20000 ECG record, however, the presented
methods may be applied not only to averaging of E@fAal but any quasi-repetitive and synchronized
signal.

2. METHODOLOGY

2.1. WEIGHTED AVERAGING FUNDAMENTALS

The biomedical signal with repetitive patterns dan (after segmentation and synchronization)
represented by:

x (1) =s(j)+n(j), 10{12..N}, jO{12... L}, (1)
whereN is the number of cycles to be averaged, lamglthe length of the single cycle. Thus, eachalign

cycle x; (j ) is the sum of the deterministic and invariant froycle to cycle signak(j) and the random
noisen ( Wwith zero mean and variance cya@. The weighted averaged cycle can be expressed as:

K=Y wx (D), 106201, @)

wherew is the weight for-th signal cycle. The choice of the weights defidéfrent types of the signal
averaging methods. In the simplest case of aritimaledveraging, all weights are the same, summpmg u

to one, equal tdN ™. If the noise power is the same in all cycles, dlassical procedure which assumes
that the weights are proportional to the inverdesoaesponding variances:

-2

w=-21_ i0{2..N}, 3)

i N
20
k=1

leads to obtaining the arithmetical averaging wisighlowever, in practice the variability of noisewer
is observed and measuring the variances directlymgossible. Thus there are employed different
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methods to estimate the noise variances or to ctertpe optimal weights without direct estimation of
the noise variance.

2.2.SELECTED METHODS OF WEIGHTED AVERAGING

For numerical experiments, presented in the negtise there were selected a few weighted
averaging methods described in detail in [15] dreddne presented in [16] with extension by partitig
of the input data in the time domain.

* AA - the traditional Arithmetic Averaging.

» WAPM.n — the Weighted Averaging method based on Partifoimput data set in time domain
and using criterion function Minimization, whichbased on minimization a functional expressing
the distance between the two (or more) averagethlsigThe parameter of the method is set after
dot and describes number of disjoint subsets aftigjgnals.

« SEBWA - the Simplified Empirical Bayesian Weighted Avgireg method [16].

« EBWA.1 — the Empirical Bayesian Weighted Averaging methedh hyperparameter
calculated based on first absolute sample momaetréquired parametgris set to 1, it is the
value suggested by author of the method).

« EBWA.C - the Empirical Bayesian Weighted Averaging methsithg Cauchy distribution.

2.3.INPUT DATA PARTITIONING

The algorithms of weighted averaging can be extrxepartition each signal cycle of the length
L. The idea of signal partition differs from the amed in WAPM method that earlier the setNofycles
was divided into disjoined subsets and now thetpmartconcerns each cycle separately, i.e. thetleng
averaging window changes.

The partition will be called sharp (traditional) &rhthe input signal is divided int§ parts (for
kO{L2,...,K}):

_ x()) JO{(k-D)L/K+1,...,kL/K
Xikm:{o(n i D{(k-) ) @
jO0{4,.. L} —{(k-)L/K +1,...,kL/K}
and fuzzy when the input signal is divided iKtqarts:
X (DB (1)
X (J) = g (5)

Z :u(ak ,b) ( J)
k=1

& = (k-05)L/K and constant

scale parameteb = 025L/K | |n both cases i is the cycle inddk 112N} ang j is the sample index

for Gaussian membership function with varying lamafparameter equ

in the single cyclej U{12...1 (all cycles have the same length L). The ideahef partitioning is to
perform K times the averaging gt {12, K} input data and then sum the resulted signals.

3. NUMERICAL EXPERIMENTS

This section investigates how partition of the ingignal affects the results of the averaging
procedure. In the experiments both sharp and fparjtions are studied and the number of pidriaries
from 2 to 5 (forK = 1 the original method is used). The number ateyto be averagedis constant and
equal 60. The simulated signal cycles are obtasmdhe same deterministic component with added
independent realizations of random noise. As thterdenistic component was taken ECG signal
ANE20000, analytical signal compliant with the Eoean Standard EN 60601-2-51 (2003). It is the
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standardized analytical ECG signal from the CTQldase [21], designed to reproduce the typical ECG
waveform with 60 bpm (beats per minute) heart rate.

First experiment studies influence of the partitoonthe root mean square error (RMSE) in the case
where the signal is disturbed by zero-mean Gausw#e with constant amplitude of noise during each
cycle. For the first, second, third and fourth ¥6les, the noise standard deviations were respygti/1,

0.5, 1, 2 multiplied by the sample standard deoradf the deterministic component. The RMSE for the
traditional arithmetic averaging method is equal028 and detailed results of RMSE for the weighted
averaging methods, depending on khparts, are presented in figure 1 (both sharp anzyfpartitions).

WAPM.2 SEBWA
4,1 3,7
4,0 35
3,9 33
3,8 ) 3,1 ‘\
3,7 2,9 ~
3,6 2,7 ;
33 1 2 3 4 5 23 1 2 3 4 5
—e—sharp 3,671 3,736 3,830 3,982 4,083 —e—sharp| 3,564 3,571 2,943 3,113 2,762
fuzzy | 3,671 3,734 3,808 3,935 4,046 fuzzy 3,564 3,574 2,885 3,085 2,777
WAPM.3 EBWA.1
41 37
4,0 35
39 33 \\ ; )
38 i 31 \/ T -9
3,7 ~ 2,9
36 2,7
35 25
1 2 3 4 5 1 2 3 4 5
—e—sharp 3,589 3,736 3,830 3,982 4,083 —e—sharp| 3,548 3,437 3,023 3,185 3,024
fuzzy 3,589 3,734 3,808 3,935 4,046 fuzzy 3,548 3,479 2,968 3,166 3,039
WAPM.4 EBWA.C
4,1 3,7
4,0 35
3,9 3,3 //\ T~
3,8 . 3,1
3,7 ,/"—/ 2,9
3,6 —— 2,7
33 1 2 3 4 5 23 1 2 3 4 5
—e—sharp 3,604 3,625 3,678 3,707 3,767 —e—sharp| 3,504 2,824 3,185 3,562 3,363
fuzzy 3,604 3,627 3,665 3,681 3,758 fuzzy 3,504 2,956 3,111 3,242 3,656

Fig. 1. RMSE for zero-mean Gaussian noise withvespchanging the amplitude of the noise.

In the case of Bayesian methods the RMSE vary 20f62 to 3.574 and for the different WAPM
methods from 3.589 to 4.083, showing that the brets outperform the other. The best result isioéta
for SEBWA method, as can be seen increasing numibparts decreasing the RMSE more than in the
case of original EBWA.1 method which confirms tleeclusions presented in [17].

Next experiment studies influence of the partitmnthe root mean square error in the case where
the cycles of the signal are disturbed by zero-n@aunssian noise with the continuously changingenois
amplitude from cycle to cycle, described by funietio

i 112 i0{12,...24
Ai) =12 i 0{25,26,...36 . (6)
61-i)/12 i0{3738...60

In this experiment the RMSE for the traditionalttametic averaging method is equal 25.257 and
detailed results of RMSE for the weighted averagimahods, depending on tKeparts, are presented in
figure 2 (both sharp and fuzzy partitions).
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WAPM.2 SEBWA
79 11,3
7,7 10,3
7 53 /\.
73
7'1 8,3
6'9 / 7'3
6,7 - 6,3
6,5 53
1 2 3 4 5 1 2 3 4 5
——sharp 6,582 6,379 7,114 7,616 7,950 —e—sharp 11,508 11,662 9,445 10,089 9,072
fuzzy 6,582 6,842 7,083 7,499 7,752 fuzzy 11,508 11,317 9,304 9,514 8,565
WAPM.3 EBWA.1
7.9 11,3
7,7 10,3
7,5 93
;i 83
6.9 - 73
6,7 6,3
6,5 53
1 2 3 4 5 1 2 3 4 5
—&—sharp 6,914 6,879 7,114 7,616 7,950 —4—sharp| 11,508 11,662 9,555 10,209 9,444
fuzzy | 6,914 6,842 7,083 7,499 7,752 fuzzy | 11,508 11,317 9,306 9,643 8,860
WAPM.4 EBWA.C
7.9 e 11,3
7,7 ) 10,3
7.5 e : 9,3 L
7,3 2
8,3
7.1 )
6,9 73
6,7 6,3
y M
6,5 53 v
1 2 3 4 5 1 2 3 4 5
—&—sharp 7,348 7,426 7,526 7,751 7,856 —4—sharp| 11,508 8,726 5,347 5,510 5,989
fuzzy | 7,348 7,411 7,533 7,741 7,785 fuzzy | 11,508 8,695 5,482 6,984 6,329

Fig. 2. RMSE for zero-mean Gaussian noise withinaously changing the amplitude of the noise.

Although maximum noise amplitude is the same (2tiplidd by the sample standard deviation of
the deterministic component) errors in this expentrare significantly greater than in the previous.

In the case of Bayesian methods the RMSE vary f50B47 to 11.662 and for the different WAPM
methods from 6.582 to 7.950. The best result isinobtl for EBWA.C method, and as in the previous
experiment it can be seen that in most cases isiaganumber of parts decreasing the RMSE for
Bayesian methods but increasing the RMSE for WAPa&ihaod.

Next experiment studies influence of the partitmnthe root mean square error in the case where
the cycles of the signal were disturbed by Caudhigen The location parameter of Cauchy distribuigon
equal to 0 and the scale parameter is set to Outiptied by the standard deviation of the deteristin
component, i.e. the original ANE20000 signal. TRd3E for the traditional arithmetic averaging method
is equal 38.255 and detailed results of RMSE ferweighted averaging methods, depending orKthe
parts, are presented in figure 3 (both sharp anzlyfpartitions).

WAPM.2 SEBWA
58 40
53
, 3,5
4,8
43 30
38 \ 25
33
28 20 \
2,3 15 x
1 2 3 4 5 1 2 3 4 5
——sharp 4,293 3,591 5,802 4,875 3,058 ——sharp 4,045 3,196 2,195 1,917 1,645
fuzzy | 4,293 3,783 3,982 3,457 3,059 fuzzy | 4,045 3,39 2,192 2215 1,722
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WAPM.3 EBWA.1
58 4,0
53 3,5
4,8
43 3,0
3,8 \ 25 .
33 \\
2,8 2,0 -
23 1,5
1 2 3 4 5 1 2 3 4 5
|—o—sharp 4,337 3,591 5,802 4,875 3,058 \-o—sharp 4,028 3,003 2,410 2,033 1,841
| fuzzy | 4,337 3,783 3,982 3,457 3,059 \ fuzzy | 4,028 3,329 2,384 2,307 1,923
WAPM.4 EBWA.C
5,8 4,0
53
\ 3,5
4,8
43 3,0
38 \ 2,5
3,3
2,8 \\ 2.0 ¥
2,3 1,5
1 2 3 4 5 1 2 3 4 5
|+sharp 4,124 3,463 2,911 2,551 2,365 \—o—sharp 3,971 2,622 2,406 1,897 1,818
| fuzzy 4,124 3,561 3,018 2,807 2,468 \ fuzzy | 3,971 2,966 2,476 2,145 1,919

Fig. 3. RMSE for Cauchy noise.

In the case of Bayesian methods the RMSE vary fioé45 to 4.045 and for the different WAPM
methods from 2.365 to 5.802. The best result iainbt for SEBWA method.

The aim of the experiments was to compare theenfie of the type of partition and the number of
parts on the resulted signal for a few selectedghted averaging methods. Based on the obtained
numerical results statistical test ANOVA was alsenducted, which found statistically significant
differences in the effectiveness of noise suppoesby different methods. In the case of Gaussiaseno
thep-value has the order of magnitude 10E-6 and ircése of Cauchy noise tpevalue is 0.003.

Presented experiments confirm the conclusions dbestrin [17], where only SEBWA and
EBWA.1 methods were analyzed, that the SEBWA methitid fuzzy partition of the input data seems to
be the best choice among the presented method®tioureducing noise in repetitive signals, esgibci
in the case of presence of impulse noise (in peréor experiments it was simulated by Cauchy noise),
and application of the input data partitioning Ieaol improve the quality of the resulting averagigphal,
especially when fuzzy partition is used.
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