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EVIDENCE-BASED MODEL FOR 2-UNCERTAIN RULES  
AND INEXACT REASONING    

In empirical sciences, among others – in medicine, domain data − stored in different repositories − are the most 
important source of domain information. There is a great number of methods, including semantic data integration, that 
enable to acquire domain knowledge from such data and express it in a convenient form. In the paper we propose a 
model for rules with uncertainty (2-uncertain rules) that can be obtained from somewhat heterogeneous data, written in 
a common format of tuples. The rules are uncertain implications, with complex premises and single conclusions, and 
two specific reliability factors. In addition, we propose functions for propagating uncertainty through reasoning chains 
in Rule-Based Systems (RBSs) with such rules in their knowledge base.   

1. INTRODUCTION 

In the last decades, it has been observed a growing interest in the field of machine learning. By 
applying inductive learning to real data stored in various data warehouses, it is possible to acquire and 
structuralize valuable domain knowledge. Much of this knowledge is represented declaratively, by means 
of rules. We mean here as well decision rules as production rules. In general, a rule determines the 
conditional dependence of some fact (conclusion) on another ones (conjunction of premises). Hardly ever 
the dependence is an absolute one, more often it happens only with some frequency (first order 
probability). Depending on the number and provenance of source data, we can also say about the 
reliability of the rule as a whole (second order probability) [2].  

In the paper we propose a model for 2-uncertain rules. It is based on the interpretation of 
uncertainty as a kind of evidential, second order probability. The model is based on a classical 
implication, provided with two reliability factors: 

internal (irf), stating the level of the dependence of a rule’s conclusion on rule’s premises, 
external (grf), stating the quality of the underlying rule.  
If factor irf has its equivalents in most of models of uncertainty, then factor grf can be found in a 

clear form only rarely. Its specific counterparts occur in well-known D-S [8] model (span of the range IR) 
and statistic research (span of confidence interval CI). In both cases, in order to estimate the correctness 
of the value of interest (belief value or risk value), one needs to calculate the proportion between this 
value and the span of an appropriate range of uncertainty. Some other proposals of calculating the rule’s 
quality can be found, among others, in [11, 12]. A specific metrics of quality, in fact - fuzzy metrics, is 
given by Zadeh [13] to his Z numbers. We would like to use factor grf of rule’s quality for ordering rules 
in the agenda and, next, for differentiating the influence of successively fired rules on the final results of 
reasoning.   

The proposal of 2-uncertain rules is comprehensive. First, the syntax and semantics of the rules are 
defined. They are general enough to express also 2-uncertain facts. The definition is an extension of the 
previous one, published in [4]. In the new version, we added the possibility to write rule’s components 
(premises, conclusion) in the negated form. The most important and  completely new in the paper is a set 
of combination functions for propagating uncertainty. The functions, attached to the RBS inference 
engine, allow to correctly reason with the proposed 2-uncertain rules, as well by means of forward 
chaining as by means of backward chaining [3, 7]. It is proven that they do not violate the semantic 
constraints imposed on the knowledge base, in particular – on the reliability factors of its rules and facts.  
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The new model is called as ’evidence based’ because of the recommended method of acquiring 2-
uncertain rules from data stored in repositories. An exemplary algorithm for designing 2-uncertain rules 
from data of attributive representation is given in [4]. A detailed proposal of calculating the values of 
factors irf and grf has been put forward in [5]. In [9] it is demonstrated how to make use of 2-uncertian 
rules in medical diagnostics.  

2. 2-UNCERTAIN RULE – SYNTAX AND SEMANTICS 

In the light of the above considerations, let us propose the following, formal and useful from the 
practical point of view, form of 2-uncertain rule:  

      it is declared with grf (��) : 

 �� ∧ �� ∧ … ∧ �� (1) 
 � with irf (��), 

where ��, ��, …, ��  stand for the rule’s premises; � − its conclusion; grf and irf – names of reliability 
factors, relating to: conclusion � given certain occurrences of all premises ��, ��, …, and ��, and the 
considered rule itself given a set of distributed domain data, respectively; �� and ��  − values of reliability 
factors grf and irf, respectively, such that 0 <  ��, ��  ≤  1. The rule’s premises and its conclusion have to be 
formulas of the form:  

 � ∈ ���, ��, … , ��� or (2) 
   ¬(� ∈ ���, ��, … , ���) or (3) 
 ���, ��, … , ��� ⊆ � or (4) 
   ¬(���, ��, … , ��� ⊆ �)  , (5) 

where � stands for one of the domain data attributes, and ��, ��, …, �� stand for values coming from the 
domain over which attribute � ranges. In order to unify these four forms, let us make for the formulas the 
following notational agreement: 

 �∎���, ��, … , ���&' (6) 

where ∎ ∈ �=, ≠� stands for one of the two relational symbols of equality; &' ∈ �⊙, ⊕� gives the formula 
an interpretation: for &' being ⊕ and ∎ being = − the interpretation (2), for &' being ⊕ and ∎ being ≠ − (3), 
for &' being ⊙ and ∎ being = − (4), for &' being ⊙ and ∎ being ≠ − (5). The using in (6) a set of attribute 
values instead of one individual value increases expressive power of the formula, and next – of the rule 
(1) as a whole. Obviously, such an extension entails the necessity of using an expanded Truth 
Maintenance System (TMS). The admission to use in (6) both relation = and its negation ≠ means that the 
rules of the form (1) describe the reality based on the open world assumption (the lack of knowledge on 
holding the relation is not equivalent to non-holding the relation). 

A tacit assumption of our model is that a rule expresses a positive monotonic dependence between 
its premises and conclusion. It can be summarized as follows: the lower the level of fulfillment of the 
premises, the lower the level of fulfillment of the conclusion. The both reliability factors used in the rule 
(1) declare the level of some evidential probability, also called subjectivist probability. Whereas factor irf 
represents an internal conditional probability (dependence of the rule’s conclusion on its premises), then 
factor grf − an external conditional probability (dependence of the rule itself on the evidence from which it 
has been derived). Factor irf has a significance influence on the probabilities of conclusions being derived 
in the process of reasoning. For a change, factor grf influences mainly the quality of derivations of the 
conclusions. However, by determining the order of firing active rules from agenda, it influences − slightly 
and indirectly − also on the probabilities of the conclusions. 

The format (1) is to be used also for representing 2-uncertain facts. Such a fact, written in short as 
follows: 

 with grf (��) : � with irf (��) (7) 
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where �, grf, irf, �� and �� preserve their syntax and semantics from definition (1), is practically an instance 
of a specific rule, with the premise equal true:  

 it is declared with grf (��) : (8) 
 true  → 
 � with irf (��) . 

An important constraint assumed in the model is the one imposed on the values �� and ��: 

 9:;� ≤ �� ≤ �;<�; 9:;� ≤ �� ≤ �;<� . (9) 

It means that experimentally determined values �� and �� should come from fixed ranges. Let us observe 
that facts can change their factors (both grf and irf) during reasoning in a RBS with 2-uncertain rules. At 
the beginning, before starting reasoning, the fact’s �� is axiomatically assumed to be 1 (it does not 
depend on the contents of given repositories). Next, as the reasoning proceeds, the value of �� gradually 
decreases. Differently, the value of �� can change in both directions. We will demand from �� and �� that 
they satisfy the constraint (9) along the whole reasoning process. In Section 3, we will define a set of 
functions for propagating uncertainty through reasoning chains in a RBS with 2-uncertain rules. We will 
prove that these functions do not violate the requirement (9). 

If domain data are stored in an attributive form, then one can derive from them a set of rules of the 
form (1) that fulfill some elementary criteria of semantic correctness. This possibility has been shown in 
[4], where an algorithm of semantic data integration and designing 2-uncertain rules has been proposed. 
Now, one more question should be answered: is the format (1) optimum for 2-uncetain rules? In 
particular, would it be possible to increase the usefulness of the rules by enabling disjunctions of premises 
or conjunctions/disjunctions of conclusions? Or, by extending the set of operators used in formulas 
defining rules’ premises and conclusions? Let us observe that a compound rule of the form: it is declared 
with grf (��) : �� ∨ ��   → � with irf(��) can be replaced by means of the equivalent pair of simple rules: it is 
declared with grf (��) : �� → � with irf(��) and it is declared with grf (��) : �� → � with irf(��). Such a replacement 
cannot be done for a compound conclusion: neither disjunction, nor conjunction of simple conclusions 
distributes over reliability factor irf. Thus, compound conclusions would be semantically justified, but 
they would result in an exponential growth in the number of investigated hypotheses and, as a 
consequence, an essential growth of computational complexity. 

Let us observe that operators used in formulas of premises and conclusions of the rule (1) constitute 
a right subset of the set used in Attributive Logic with Set Values over Finite Domains (ALSV(FD)) [6]. 
The remaining ALSV(FD) operators are not used either due to low applicability of rules with those 
operators (e.g. operator =), or due to difficulties in implementation (e.g. operator ∼).  

Yet, let us briefly comment the role of the operator of logical negation ¬. Having enabled to use it 
in formulas of the rule (1), we have increased the expressive power of our method of knowledge 
representation. On the other hand, due to the obligatory condition (9) and the obvious requirement 
PLS(¬�) = 1 − BEL(�), its usage would normally result in the necessity of performing additional tests − for 
all the hypotheses considered while reasoning − by the module TMS. A satisfactory solution of this 
difficulty will be proposed in Section 3. 

The above remarks show that the set of operators for usage in the rule (1) should be selected very 
carefully. Among others, one should take into account the existence of attributes ranging over wide 
domains. Due to such attributes, the number of possible hypotheses EF� can be really great. We calculate 
it from the following formula: 

 EF� = 2|HIJ|K� + 2|HIM|K� + ⋯ + 2|HIO|K� , (10) 

where n stands for the number of considered attributes,  �P – an attribute of the ordinal number Q (1 ≤ Q ≤
R), S'P  − the attribute’s domain, and |S'P| − the cardinality of this domain (1’s in the exponents are an 
effect of using formulas in both positive and negative form). 
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3. FUNCTIONS FOR PROPAGATING UNCERTAINTY THROUGH  
REASONING CHAINS 

In order to correctly reason in RBSs with 2-uncertain rules, one should precisely define the 
influence of the both reliability factors on the course and the final result of reasoning. Therefore, for the 
case of forward chaining [3, 7], we assume the agenda (a set of rules that are active at the current step of 
reasoning) to consist of all these and only these rules that satisfy the condition: 

 TQR(UVWX�, UVWX�, … , UVWX�, ��) ≥ Z�;   TQR(QVWX�, QVWX�, … , QVWX�) ≥ Z�, (11) 

where QVWXP and UVWXP, 1 ≤ Q ≤ R, stand for current values of reliability factors of premise �P, and Z�, Z� − for 
thresholds of reliability that are necessary for rule firing. Conflicts in the agenda will be resolved in favor 
of rules of highest priorities, and the dependency between the rule’s priority and the rule’s factor grf will 
be set as monotonically increasing. The complete process of forward chaining, starting at some initial 
state of the system’s database (a set of axiomatic 2-uncertain facts), finishes after coming to an empty 
agenda. Because of the proposed method of resolving conflicts in the agenda, we can let the forward 
chaining process stop earlier − just after firing a desired number of rules. Obviously, the sets of 
hypotheses obtained after these two processes of reasoning can differ from each other. First, the set 
obtained after the shortened process of reasoning may not contain some hypotheses obtainable after the 
complete process of reasoning. Next, in pairs of corresponding hypotheses from the two sets, the factors 
grf or irf can differ from each other. 

Let us assume that R[ stands for one of the two non-equality operators (≤, ≥), and i(R[) stands for 
the reverse of operator R[. In case of backward chaining [3, 7], the proof of the goal: (it is declared with 
grf(���) : true → �� with irf (���), R[) starts from choosing one of the rules whose conclusion �� with 
irf(���) satisfies the requirement: \(�� 	= 	��) ∧ (���	R[	���)^ ∨ \(�� 	= 	¬��) ∧ (���	i(R[)	���)^, and 
whose reliability factor grf satisfies the inequality: ��� ≥ ���. Again, the first place should be given to 
this one of all the matching rules which has the greatest priority. The described procedure should be 
continued - as a search with backtracking - for the premises of the appointed rule, next for the premises of 
the subsequent rules, and so on. The whole process will be finished after proving the goal (successfully), 
or after searching the whole space of potential solutions (with failure). 

When forward chaining, the uncertainty will be propagated in the system according to a few 
principles, having the form of functions similar to those in [1] and [10]. These are: an opposite function 
and three combination functions, intended for: 

• propagating uncertain evidence, 
• operating on complex conjunctive hypotheses, 
• managing with multiple production rules. 

We will shortly discuss these functions in the successive subsections. In order to precisely explain their 
semantics, we introduce an additional notion of ‘virtual rule’, admitting a conjunctive form of the 
conclusion. Virtual rules will be used only when necessary. Speaking shortly ‘rule’, we continue to mean 
2-uncertain rule of the form consistent with the definition (1). Only such rules can be stored in the 
system’s knowledge base.  
 
The opposite function. In order to make the database of our RBS as homogeneous as possible, we will 
restrict 2-uncertain facts stored in the database to positive only, i.e. the ones based on the formulas (2) and 
(4). However, since our rules can contain also premises and conclusions in negative form (based on the 
formulas (3) and (5)), we have to know how to derive the necessary negative premises and how to process 
the obtained negative conclusions. The both problems will be solved by using the opposite function of 
during reasoning. The function is defined over the set of 2-uncertain facts, and its calculation for the 
following fact ̀ P: 
 `P =	it	is	declared	with	grf	(��P)	:	true		→	�P	with	irf	(��P)		 (12)	
is being performed according to the formula: 
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 aW(`P) 	= 	`bc 	=	it	is	declared	with	grf	(��bc)	:	true		→	�d	with	irf	(��bc),,,,				 (13)					
where �d 	= ¬�P, ��bc 	= 	 ��P, and ��bc 	= 	1	 −	��P. By the assumption (9), we have: 9:;�P ≤ ��P 	≤	�;<�P. In this case: (1 − �;<�P) 	≤ 	��bc 	≤ 	 (1 − 9:;�P) and, in view of the obvious equalities: 
9:;�bc 	= 	 (1 − �;<�P) and �;<�bc 	= 	 (1 − 9:;�P), we obtain the expected double inequality: 
9:;�bc 	≤ 	 ��bc 	≤ 	�;<�bc. From the other hand, in view of the equalities 9:;�bc 	= 	9:;�P and 
�;<�bc 	= 	�;<�P, the constraint 9:;�bc 	≤ 	��bc 	= 	 ��P 	≤ 	�;<�bc is satisfied. The domain of the 
function of cannot be extended to the full set of 2-uncertain rules; such an extension would result in 
violating the positive monotonic dependence between rule’s premises and its conclusion.    

The function of will be called every time after obtaining a fact (̀ P) in negative form  
(�P of the form (3) or (5)). Then, if the system database does not contain a fact with conclusion �d = ¬�P, 
then the result ̀ bc will be physically stored in it. If the database contains an axiomatic fact with 
conclusion �d, then ̀ bc will have no influence on its state, otherwise - `bc will be subjected to the 
operation of function mr defined below. Besides, the function of will be called when a negative premise 
for a rule intended for firing is necessary. Obviously, a negative fact ̀bc will not be considered for 
storing in the database.  

 
The combination function for propagating uncertain evidence. When forward chaining, it often 
happens that conclusion �P, assumed/derived  in step Q by means of virtual fact ̀P:  
	 it	is	declared	with	grf	(��P)	:	true		→	�P	with	irf	(��P)	 (14)	
becomes a premise of rule d̀, to be fired in step e such that e > Q:  
	 it	is	declared	with	grf	(��d)	:	�d		→	�d	with	irf	(��d)	 (15)	
where �d 	= 	�P. Then, immediately after having fired rule d̀, one should call the combination function ue 
for propagating uncertain evidence. Its calculation for the above arguments `P and ̀ d will be performed 
according to: 

 g[(`P , d̀) 	= 	`hi 	=	it	is	declared	with	grf	(��hi)	:	true		→	�d	with	irf	(��hi)	 (16)				
where ��hi = min(��P, ��d), and ��hi 	= 	 ��P ∙ ��d, giving the fact ̀ hi (similarly as we did it for the 
opposite function op, also for the proposed function ue and the next combination functions ch and mr, one 
can easily prove that they calculate irfs and grfs fulfilling the requirement (9); because of lack of place, 
the proofs are here omitted). Let us remark that, according to expectations, together with the increase of 
reasoning chains both internal (irf) and global (grf) reliability factors of successively generated facts 
decrease.  

Next, in case �d has negative form (3) or (5), the obtained fact `hi should be subjected to the 
operation of the function of. Otherwise, if the system database does not contain a fact with conclusion �d  
- then result ̀ hi should be physically stored in it; if the database contains an axiomatic fact with 
conclusion �d – then ̀ bc has no influence on its state; if the database contains a non-axiomatic fact with 
conclusion �d – then ̀ bc should be subjected to the operation of function mr defined below. The 
proposed combination function ue harmonizes well with the assumption on positive monotonic 
dependence between rule’s premises and its conclusion. 

 
The combination function for complex conjunctive hypotheses. In order to correctly propagate 
uncertainty through reasoning chains, also a method for evaluating reliability factors for conjunctions of 
premises is necessary. For this purpose, we provide the combination function ch for complex conjunctive 
hypotheses. Having obtained virtual fact `P of the form (14), and then fact d̀ of the form: 

 d̀ 	=	it	is	declared	with	grf	(��d)	:	true		→	�d	with	irf	(��d)	 (17)	
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and such that �d ≠ �P and �d ≠ ¬�P, one can apply function ch. Its calculation for `P and ̀ d will be 
performed according to the formula: 

 mℎ\`P , d̀^ = 	`�o 	=		it	is	declared	with	grf	(���o)	:	true		→	�P	∧	�d 					with	irf	(���o)	,,,,				 (18)				
where ���o 	= 	min(��P, ��d), and ���o 	= 	min(��P, ��d). The formula (18) declares that the factor irf of a 
compound conjunctive hypothesis should be calculated as the minimum of all factors irf assigned to the 
component hypotheses. Similarly, the factor grf of the derivation as a whole should be calculated as 
minimum of all factors grf assigned to the derivations of the component hypotheses. The function ch(`P, d̀) will be called only if necessary, i.e. if a rule intended for firing has as its premises both �P and 
�P. An obtained virtual fact ̀�o will not be physically stored in the system knowledge base. 
 
The combination function for multiple production rules. The most difficult to estimate is the 
probability of a conclusion that can be derived from the given evidence in many different ways. Each 
such a way can be represented by a particular reasoning chain, having at the first item - the formula true, 
and at the last item - the underlying conclusion. The probability of the conclusion should be the resultant 
of reliability factors irf obtained in all those derivations. Remind that the order of firing rules depends in 
our RBS on the rules’ priorities, and these priorities depend monotonically on the rules’ reliability factors 
grf. Let us agree that the influence of multiple rules concluding the same conclusion on the factor irf of its 
hypothesis should be differential and decreasing with the course of reasoning. It was proposed in [5] to 
differentiate it by means of weight �P that is dependent on: the number p of all multiple rules (the greater 
the number, the smaller the weight) and the relative position Q of the rule (the earlier the position, the 
greater the weight). The weights can be calculated from the following system of equations: 

 	q 		
rs
rstJ = u	,					WaV	2 ≤ Q ≤ p,			�� +	�� +⋯+	�v = 1,				 (19)	

where p stands for the number of multiple rules, �P – the weight of that one from among all multiple rules 
which was obtained as Q-th from them, u − a constant of proportion between the weights of reliability 
factors irf of two successive multiple rules. It is assumed that u should be greater than 1 (e.g. u	 = 	1.1, and 
u	 = 	2 to make slight and significant differentiation, respectively, in the weights of multiple rules). 

Let us now define the function mr for multiple rules concluding the same conclusion. Assume that `P stands for fact (12) in positive form (�P of the form (2) or (4)), and ̀d stands for fact (17) such that 
�d 	= 	�P, and the both facts have been obtained: d̀ - in the current step of reasoning e, as R-th (2 ≤ R ≤
e) such fact with conclusion �P, and ̀ P - in a preceding step of reasoning Q, Q < e, as (R − 1)-th such fact 
with conclusion �P. The constraints imposed on facts `P and d̀ mean that, during the considered 
reasoning process, none fact `w with conclusion �w 	= 	�P and reliability factor grf(��w) such that ��w ∈ x��P; 	��d) has been obtained. The pair (`P, d̀) is an argument for function mr, whose calculation 
should be performed according to the formula: 

 TV(`P , d̀) 	= 	`�� 	=	it	is	declared	with	grf	(����)	:	true		→	�P 					with	irf	(����)	,	 (20)				
where ���� 	= 	min(��P, ��d); ���� 	= 	 (1	–	��) ∙ ��P 	+ 	�� ∙ ��d, and �� stands for the weight of fact d̀, 
that was obtained as R-th fact with conclusion �P. The value �� should be calculated based on index R, 
according to the formula (19). The function mr(`P, d̀) is to be called just after having obtained fact d̀. 
The resultant fact ̀�� is in positive form (�P of the form (2) or (4)) and, as such, it will be physically 
stored in the system knowledge base, replacing fact d̀ there.   

In fact, forward chaining can be seen as the dynamic process of building a virtual derivation graph. 
In our RBS, it is implemented as a process with a kind of backtracking: there is no possibility to delete or 
modify once obtained conclusions, but it is possible to repeatedly correct once estimated values of their 
factors irf and grf. Thus, the derivation graph is being built incrementally: once added nodes and edges 
cannot disappear; at most, the nodes are slightly modified. In the end, each hypothesis from the graph has 
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its factor irf equal to a weighted-average of all irfs obtained in the multiple rules concluding its 
conclusion. 

For a change, backward chaining can [3, 7] be seen as the process of searching an appropriate path 
in a virtual derivation graph. It is implemented as a process with full backtracking. Here, the uncertainty 
is propagated in the opposite direction, from a fact-hypothesis and required values of its factors irf and grf, 
to facts-axioms that are physically stored in the system knowledge base. In our RBS, the propagation will 
be performed by means of an extended opposite function (eo) and two next combination functions, 
intended for: 

• back-propagating uncertain evidence (bu), 
• operating on complex conjunctive conditions (cp). 

The mentioned functions differ from their counterparts from forward chaining as well in domains as in 
codomains. The next difference lies in that their results (facts obtained and examined while backward 
chaining) are not being stored in the database, and are not subjected to the constraints (9). Because of lack 
of place, the definitions are here omitted.  

4. TWO EXAMPLES OF INEXACT REASONING  

Let us now illustrate the above considerations by means of medical examples of the both methods 
of reasoning, first − forward chaining, next – backward chaining [3, 7]. 

Assume that the thresholds Z� and Z� of reliability that are necessary for firing rules are set to 0.7 and 
0.5, and the constant u of proportion between the weights of successive irfs is equal to 1.5. Assume we 
have a RBS with 2-uncertain rules to support general medical diagnostics. Let its knowledge base contain 
the following axiomatic 2-uncertain facts of the patient’s state of health: `� 	= it is declared with grf (1) :  

true → General_Diagnosis = {asthma}⊕ with irf (0.7)              `� 	= it is declared with grf (1) :  
true  → Current_Health_State = {asthma_attack}⊕ with irf (0.3)              

and the following 2-uncertain rules of the domain: 

`{ 	= it is declared with grf (0.8) :  
General_Diagnosis = {asthma}⊕   

             → Symptoms = {wheezing, shortness_of_breath} ⊙ with irf (0.8)            `| 	= it is declared with grf (0.7) :  
Symptoms = {wheezing, shortness_of_breath} ⊙   

             → Diagnosis = {bronchitis}⊕ with irf (0.6)              `} 	= it is declared with grf (0.9) :  
Symptoms = {wheezing, shortness_of_breath} ⊙	∧ 

         	¬Current_Health_State = {asthma_attack}⊕ 
            → Diagnosis = {bronchitis}⊕ with irf (0.7) .         

At the beginning, from among these three rules, only `{ will enter the agenda. As a result of firing, 
it will add a new fact ̀~ to the knowledge base:   `~ 	= it is declared with grf (0.8) :  

true  → Symptoms = {wheezing, shortness_of_breath} ⊙ with irf (0.56) . 

Its reliability factors, obtained by means of using the function ue, are as follows: grf(0.8) 	= 	min(1.0, 0.8), 
and irf	(0.56) 	= 	0.7	 ∗ 	0.8. 

Now, the two remaining rules fulfill the conditions (11), but ̀ } has greater priority than `| (0.9	 >	0.7). However, in order to become fully active, it needs, first – determining the value of function op for 
fact ̀ �, and next − determining the value of function ch for rule ̀ ~ and the newly obtained rule `�: 
`� 	= 	op(`�) 	=	it is declared with grf (1) :  

true  → ¬(Current_Health_State = {asthma_attack}⊕) with irf (0.7) `�� 	= 	ch(`~, 	`�) 	=	it is declared with grf (0.8) :  
true  → (Symptoms = {wheezing, shortness_of_breath} ⊙		∧ 
             ¬Current_Health_State = {asthma_attack}⊕)   with irf (0.56) , 
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where grf(0.8) 	= 	min(1.0, 0.8), and irf	(0.56) 	= 	min(0.56, 0.7) . 
The obtained fact ̀� is in negated form, and the obtained fact `�� is a virtual one, and − as such − they 
will not be stored in the system knowledge base. 

Due to the absence of a fact with conclusion Diagnosis = {bronchitis}⊕ in the system knowledge base, 
the firing of rule ̀ } will result in adding the following fact `� to this base:  `� 	= it is declared with grf (0.8) :  

true  → Diagnosis = {bronchitis}⊕ with irf (0.39) , 

where grf(0.8) 	= 	min(0.8, 0.9), and irf	(0.39) ≈ 0.56 ∙ 0.7	.  
The firing of the last active rule `| will entail calling the function mr and, as a consequence, the 

replacement of ̀� in the system knowledge base by the following fact `���: `��� =	it is declared with grf (0.7) :  
true  → Diagnosis = {bronchitis}⊕ with irf (0.37) ,   

where factor grf(0.7) 	= 	min(0.8,min(0.8, 0.7)), and factor irf(0.37) 	≈		
(1 − 1/(1.5 + 1)) ∗ 0.39 + 1/(1.5 + 1)) ∗ (0.56 ∗ 0.6). 

Assume again the primary contents `� – `} of the system knowledge base. Let us now answer the 
following uncertain question E�:  E� = (it is declared with grf (0.7) :  

true  → ¬(Symptoms = {wheezing, shortness_of_breath} ⊙) with irf (0.1), ≤) . 

The only rule with conclusion Symptoms = {wheezing, shortness_of_breath} ⊙ is ̀ {. Considering a positive 
form of the conclusion in ̀{, the RBS will use the extended opposite function eo to obtain the 
complement of question E�. It will be as follows:  E� = (it is declared with grf (0.7) :  

true  → Symptoms = {wheezing, shortness_of_breath} ⊙ with irf (0.9), ≥) . 

The calling of function eo is synchronized with the reversal of the constraint imposed on factor irf. 
Next, the inference engine concentrates on premise General_Diagnosis = {asthma}⊕ of rule ̀ {. By using 
function bu for back-propagating uncertain evidence, it makes the following uncertain question E��: E�� = (it is declared with grf (0.7) :  

true  → General_Diagnosis = {asthma}⊕ with irf (1.0), ≥) , 

where 0.7 is the smallest acceptable value of factor grf of the fact from E��, and 1.0	 = min(1.0, 0.9/0.8)	− the 
smallest acceptable value of its factor irf. Let us observe, that fact `� fulfills the constraint imposed on grf 
but does not fulfill the constraint imposed on irf. As a result, the initial uncertain question E� will be 
answered with no, that is compatible with the result obtained in the process of forward chaining.  

5. CONCLUSIONS 

The proposed 2-uncertain rule model can be a base for construction of a RBS with uncertainty, in 
particular – a RBS to support medical diagnostics. In general, diagnostic efforts can be classified in two 
categories: 

• initial efforts, that consist in drawing a general picture of patient’s condition (it is created based on 
the anamnesis – if possible, and some physical examinations, e.g. blood pressure measurement, 
temperature measurement, bronchial auscultation, heart auscultation), 

• advanced efforts, that consist in verifying different diagnostic hypotheses.  
In the first case, a RBS with 2-uncertain rules can be used to generate as much as possible medical 

conclusions from the data acquired while initial diagnosing. In order to do this, the system should operate 
in the mode of forward chaining, with an optional constraint on either the threshold of reliability of the 
conclusions (factors grf), or the maximum number of the conclusions (remark, that successively generated 
conclusions have their grfs smaller and smaller). The conclusions will be stored together with their 
probabilities (factors irf) estimated by the functions for propagating uncertainty. From a medical point of 
view, the most interesting and important will be conclusions with very small (close to 0) and very great 
(close to 1) values of factor irf.  
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For a change, in case of the advanced diagnostics, the RBS  can be used to advise with a concrete 
hypothesis: is it no less (no more) probable than we would expect it to be? In this case, the system should 
operate in the mode of backward chaining, in cooperation with the functions for back-propagating of 
uncertainty. 

The proposed in the paper strategy for qualification 2-uncertain rules to the agenda is a simple one. 
On request, it can be modified in any way. Similarly, the proposed algorithm for resolving conflicts in the 
agenda can be replaced by a more sophisticated one. For instance, apart from the factor grf of the rule as a 
whole, it can also take factors grf of its premises into account.  

Regardless of its operational mode, our RBS to support medical diagnostics will use still the same 
knowledge base. The base will consist of thousands of 2-uncertain rules, that were induced from the real 
medical evidence. In the paper, we did not raise the problem of the base quality, which is very important 
for an effective and efficient system operation. As it was proposed in [4], the knowledge base − with 
concern for its quality − will be refined from the pairs of contradictory rules and from all rules subsumed 
by any other ones to be found in it. The refinement will be performed at once during the construction of 
the base. 

The practical advantages and practical difficulties of using 2-uncertain rules are widely illustrated  
in [9].  
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