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Przemystaw KUDEACIK

PERFORMANCE EVALUATION OF BALDWIN’'S FUZZY REASONING FOR
LARGE KNOWLEDGE BASES

The paper compares performance of Baldwin's fuzmsoning based on a fuzzy truth value with theefast
available solutions. The analysis is important iden to locate areas where improvement of the fgsthe most
significant. Potential fast approach based on tlzzyf truth value would be very interesting for marsgers applying
fuzzy systems to solve problems involved with caempknowledge bases. Particularly, all research idensg an
analysis of genes employing DNA microarrays. Suctthmds very often generate rules with thousandataic
premises.

The most valuable advantage of Baldwin's reasorsmgeserving a fuzzy relation between a fact apdemise
in the inference process, where other solutionse@ally those commonly used, usually reduce ibrity one value.
Obtaining the method which, from computation tinménp of view, is comparable with common approachesoffers
more advanced process of fuzzy reasoning, would significant achievement.

The goal of this analysis is to prepare the futesearch considering development of Baldwin’s mathehich
computational complexity is comparable to simpéestfand widely used solutions like systems baseth®@mpproach
of Mamdani and Assilan or Larsen.

1. INTRODUCTION

Among a great number of different applications, zfjuzsystems are widely employed in
miscellaneous areas of medicine and biology. ThelevBnvironment of medical problems is extremely
uncertain. That is why the soft computing methaesbeest suited to such domain.

Some complex problems involve a large amount cd tiatbe analyzed and processed. In this case
the knowledge base of a fuzzy system contains maleg with compound premise (even thousands of
atomic premises). Good examples in such area aresgelated problems, which are extensively studied
by many scientists using different fuzzy approaddes, 8-11, 16-17, 19-27]. Many research problems
this area are involved with the analysis of DNA roarrays used in simultaneous measurement of DNA
expression levels or to genotype multiple regioha genome. The knowledge bases of fuzzy systems in
this case often contain complex rules with thousasfdatomic premises.

This paper contains the analysis of computatiomshpiexity comparing widely used and fast
reasoning approaches with the forgotten method alfi@n. Subsequent sections describe mentioned
solutions, contain analysis of numerical implemgates with conclusion at the end, where further
research directions are proposed.

2. FUZZY INFERENCE AND THE FUZZY TRUTH VALUE

Fuzzy reasoning based on the fuzzy truth valueimtesduced by Baldwin in 1979 [1], which was
a few years after the first approach, composition of inference, described by Zadeh in 1973 Eitb
[28-30]. The main idea differentiating these twolusons is the reasoning domain. The classic
compositional rule of inference works directly dre ttruth functions of a fact and a premise. Tha ide
for modus ponendo ponens can be expressed byltbwifay equation [7]:
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He (Y) = %deuA.(x) 0 1(2 (%), 125 (), 1)

whereua(X), ua(X), us(y), us(y) are membership function$y represents any triangular norm used for
intersection between a fuzzy fa&tand a fuzzy implicatioh, which is obtained from a fuzzy premiée
and a fuzzy conclusioB. The fuzzy sets are described in universes aodiseX, for a premise and a
fact, andY for the conclusiorB and the result of the inferenB& Computational complexity of the
approach (1) for multi-compound premises becomeblematic because of multi-dimensional analysis,
which is shown below for only two premises [7]:

Ho ()= SUP (Up-00) Gy Ha (%) T V(s (6) Ty s, (%), 1 (1)) 2)
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A very common simplified approach was presentedtffier first time in 1975 by Mamdani and
Assilan [18]. The idea used minimum operation dgaagular norm and values of facts (system input)
were fuzzyfied with singleton, which is describegthe following equation for two premises and facts

[7]:
He:(y) = min|min(z, (%) s ia, (%)) 26 (9], (3)

wherexin; andxinz represent input values of the fuzzy system (fikés50 km/h or -4°C). Larsen [15]
proposed a very similar approach that used pradstgad of minimum operation.

It can be noticed that for calculating one value®fy) membership function the analysis Xf and X,
domains is not longer performed. It is very impottéo emphasize, that (3) is not equivalent to (2)
considering all available implications, trianguierms and different methods of input fuzzyficatimd
types of membership functions. In general the tssabtained for this two equations are different,
especially for fuzzyfied input and within the rasg#y variable, where Qug(y)<1.
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Fig. 1. Examples of fuzzy truth values and a tfutiction modification.
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The fuzzy reasoning presented by Baldwin [1] motWesinference process into the space of the
fuzzy truth values [3,1]. Initially, correspondirigcts and premises are combined to obtain, sodzalle
truth function of a premisg, (membership function of a fuzzy truth value) [1]:

7,(7)= sup (4] @)

XaX

[l
70[01]

Calculatedtp represents compatibility of a particular facthwitorresponding premise. Depending
on the level of compatibility and types aRA'(x), pA(x) membership functionsgp can take infinite
number of forms. Generally, some basic examplese waermed like absolutely trueaps.true), true
(ttrue), undecidedt(nd.), false tfalse), very true dvery true), fairly true qfair.true), fairly false
(tfair.false) and very falsa\(ery false) [1].

The truth function can be directly used to modifly #inguistic expression [3]. For example:

D :uAverytrue (X) = Tverytrue (ILIA (X))' (5)

xax

Therefore, assuming a linguistic expresstolike “medium temperature”, the new expressfggy
true IS Obtained: “it is very true that temperaturemedium”. The truth function modification [3] can
completely change the meaning of an expressiorniike absolutely false that temperature is medium
Fig. 1 presents mentioned truth functions and Hmy tan be used to modify fuzzy expressions.

Reasoning phase in the method of Baldwin is baségan the fuzzy truth space. Corresponding
premises and facts are transformed by (4) intd fuctions. In case of fuzzy rules containing coonm
premise (i.e. “air_temperature is medium and aimidgity is high”) all atomic premises can be
sequentially joined into one collective truth fuoatz, by the following equation [1]:

4, T(@= suplr, ()57, (V) 6)

703

x,yO[01]

where ¥ indicates either triangular norm (T-norm) or migallar conorm (S-norm), depending on a type
of conjunction (AND or OR respectively).

The truth function of a premide,) is used to obtain the truth function of a conduogz,), according to
the following equation [1]:

r,(9)= suplr,(7) 3 1(7.9)], ()

o] n0[03]

wherel represents any fuzzy implication or triangularman case of conjunctive approach.

Generally speakingg representstruth” only when premise is true. Otherwise it takes nwréess the
form of “undecided” truth function funq). This leads to the final phase of reasoning, ehesultB’ is
calculated basing on conclusiBnWith z, function the conclusion can be obtained fiBrasing the truth
function modification, like it was described earlja, 1]:

0 #s(y)=14(us(y)) - ®)

Transforming domains of all different premises iotee unified truth space can be perceived as an
advantage from computational point of view (compgrio the compositional rule of inference without
modifications). The problem of compound premisenc longer complex because in this case the
reasoning process is characterized by linear camtipntl complexity according to the number of atomi
premises in a rule, which is precisely analyzesubsequent sections.

It is important to emphasize, that this solutioegarves a full fuzzy relation between facts and
premises (in the form of truth functions) throudpe twhole reasoning process. In simplified approsche
this relation is mapped to only one value in [Qdiige. Nevertheless, the computational compleXity o
the solution remains much higher in comparisorh&approaches like (3). Therefore, an analysisrgd
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area of the best possible improvement is very ingmbifor future development of the solution, wharh
the one hand is much more efficient but on therdtlhed preserves all the advantages mentionecearli

3. COMPUTATIONAL COMPLEXITY ASSESSMENT

Precise analysis of computational complexity ineaagal case is impossible, because the problem
is closely related to a particular algorithm pemfiorg the designed task. Therefore, some assumptions
have to be made to confront and assess describibdase

Fuzzy sets' representation for calculation purpases be various. Contemporary solutions use
different approaches to describe and store memipefghctions. The most common awecuts, piece-
wise linear functions, discrete points and matherabexpressions (i.e. exact description of Gaussia
function). Mathematical expressions are usually th&test at the first phases of inference process
(obtaining a membership value), but can be probilenta precisely describe obtained conclusion,
especially after aggregation of the results. Theeioapproaches are flexible at any phase of cdionla
However, they are usually involved with higher siziestored data, depending on the accuracy of
represented membership functions.

For the rough assessment of computational compléxitas assumed, that a membership function
is described byN elements, either discrete points, nodes of pigse-wnear function or number of
analyzedao-cuts. Such assumptions let to evaluate possilgleritims in terms of number of needed
operations.

3.1.SIMPLE AND FAST APPROACHES

Considering the solution of Mamdani and Assilaneda®n equation (3), the computational
complexity of the approach can be described bydh@wing expression:

Klog, N+(K-1)+N, (9)

where

log:N : represents calculations needed to obtain a w@lueembership function described by ordehed
elements (for either premise or conclusion),

K: represents a number of atomic premises in a camppremise

Analyzing the expression (9) it can be noticed tihat first part is responsible for calculatikg
values for atomic premises, the second for calmgatompound membership level (junctionKovalues
from the first part) and the third for obtainingfuzzy result (based on the fuzzy set of conclusion
described byN elements). Therefore, computational complexityeteling on theN parameter can be
expressed in big O notation N) for smallK values and(log:N) for highK values and(K) for the
analysis depending on tikeparameter.

In contrary to complexity of (2), presented levelsarly indicate linear relation with number of
atomic premises in a rule.

To verify the validity of the expression (9) accogl to N parameter, two groups of tests were
performed. The first group concerned a greateuanite of the logarithmic part for high valueXofThe
second group verified a linear relationship in cafSew K values.

Fig. 2 presents results obtained f6r10* and Fig. 3 fork=10. Membership functions of atomic
premises and conclusions used in all tests weresstu Each result shown on Fig. 2 represent
computation time for 100 rules and results from Bigepresent time obtained for 5000 rules.

It can be noticed, that the Fig. 2 clearly demaiss the influence of logarithmic part and the Big.
confirms the linear dependence.

32



MEDICAL DATA CLASSIFICATION METHODS

T[s]

3.3
3.2
3.1
3.0
2.9

2.8
2.7 7

2.6 -~
25 ///
2.4

23

100 200 300 400 500 600 700 800 900 1000 1100 N

Fig. 2. Influence oN parameter on computation time for fast systems t10°.
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Fig. 3. Influence oN parameter on computation time for fast systemb It10.

The last group of tests were performed to verifjn@ar complexity of the problem accordingKo
parameter. In this case theparameter was fixed and equal 2023. The resudtp@sented in Fig. 4 and
contain average time of computations for one rule.
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Fig. 4. Influence oK parameter (number of atomic premises in a ruleanputation time for fast systems.
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3.2. THE APPROACH OF BALDWIN

Computational complexity of Baldwin’s reasoningosigly depends on the algorithms obtaining the
described truth functions. Baldwin proposed a sengikcrete solution [2] and since 1980 it is veaych
to find other implementations, because the appra@gms to be forgotten. The author of this article
proposed within the Fuzzlib library [12-14] the @bn using piece-wise linear representation of
membership function. The library contains algorithoonstructing truth functions according to chosen
precision parametaninDY. This allows the system user to control accurdcyepresentation. For fixed
minDY the number of elements describing generated frutttions encloses within a small range and it
does not depend on the number of elements desgnibembership functions of facts and premises. For
example, wheminDY=10? the number of elements describing generated funtttion is approximately
19. In this case computational complexity of obtagra premise truth function takes the followingnfio

Cinoy 109, N = O(logz N)' (10)

where Chinpy represents the number of elements describing th function depending ominDY
parameter. For fixethinDY it can be considered as constant and it can btezihin the big O notation.

The next phase of Baldwin’s reasoning involves fjioms of truth functions obtained for atomic
premises. The result represents the truth funaifoa compound premise, which is used in subsequent
phases of the inference.

The Fuzzlib library proposes the approach wher@rioter to calculate one point of an output truth
function the description of two combined truth ftioos is iteratively analyzed. Therefore, the Solut
can be described by the following expression:

2C 1i00vCorinoy = 2Cominpy , (11)

where Zninpy represents analysis of two input truth functioméiich is performedCyinpy times to
calculate elements of an output truth function.

Computational complexity of the next phase in Bahds reasoning, which is obtaining a truth
function of conclusion described by (7), is at saene level as computing a compound truth functldi. (
It also considers calculations Gf,inpy elements, where analysis of a premise truth fanads needed for
each element. Therefore, it can be expressed Wipllbe/ing expression:

C:minDYCminDY = CminDYZ' (12)

The last phase, described by (8), is involved withaining the fuzzy resuB’ basing on the fuzzy
conclusionB, which is the truth function modification. Thisage considers obtaining a truth function
value (log(Cnminpy)) executed\ times, which directly leads to the expression:

N Ing (CminDY)' (13)

Therefore, considering all elements of Baldwin’éerence for one fuzzy rule, the computational
complexity can be described by the following expras:

KC:min DY Iogz N + (K - 1)ZcminDY2 + C:min DY2 + N IOgZ(CminDY)’ (14)

which respectively includes: obtainihgtruth functions of atomic premisek-1) junctions of premise
truth functions, obtaining a truth function of ctuston and the final fuzzy result.

Similarly to (9), it can be noticed that (14) isachcterized by linear dependence according amd
N parameters. These assumptions were verified byenoah tests, the results of which are presented at
Fig. 5 and Fig. 6. The first group of tests consadedependence on thkeparameter. Number of premises
were fixed in this case %=100 andninDY=107?, which giveSCminoy = 19.
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Fig. 5. Influence oN parameter (size of fuzzy sets description) on agatpn time for Baldwin’s reasoning.

The second group of tests examined the influend€ oh the time of computation. In this cdde

was fixed to 220 andninDY parameter stayed at the same level as in previpaap of tests
(minDY=107).
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Fig. 6. Influence oK parameter (hnumber of atomic premises in a ruledanputation time for Baldwin’s reasoning.

The examinations directly show linear dependencerding toN andK parameters, which confirm
the assumptions leading to final complexity (14).

Although the approach of Baldwin is characterizgdhe same level of computational complexity
as simple common solutions (considering dependendd andK parameters) it is also dependent on
Cmindy- This parameter is crucial to the final time ofgmutation. The smalleCninpy IS, the less influence
it has on (14) and the solution works faster. Addglly, (14) includes more sub-expressions then (9
which also can change the complexity in some cases.
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3.3. COMPARING COMPLEXITY OF THE APPROACHES

Results presented on Fig. 4 and Fig. 6 let to coenflze time complexity of the two analyzed
methods. Computations for one rule containing 5@6fimic premisesK=5000) took approximately
16 [ms] for simple approach and 8,5 [s] for the liempentation of Baldwin’s method. Considering the
parameteN fixed respectively at the level of 2023 and 226 hnear dependence in both cases, it lets to
calculate a relative rate of performarite

(8500)
p= 220
16
2023
which indicates, that the full implementation ofl@ain’s solution is in this case almost 5000 times
slower then the fastest, simplified approaches. &l@s, it needs to be emphasized that the analyzed
method based on a fuzzy truth value was implementgtdout any simplifications and includes
fuzzyfication of the input data. The full approamhZadeh, based on the compositional rule of imfeee
(2),(2), is characterized by exponential complexigpending on a number of atomic premis€s That
is the main reason why it is not applied in thisxfo

Computational complexity of simplified approachesnsidering input fuzzyfication could be
described by the extended version of (9):

= 4900, (15)

K(N +2N) +(K -1 + N, (16)

where theK(N+2N) part is responsible for fuzzyfication &ffacts and finding the highest value of their
intersection with corresponding premises. Considering large numbeKatie first part is dominant and
the modification significantly increases the comghefrom K(logzN) to 3KN. AssumingN at the level of
2023 andK=5000 the performance raté of the simplified solution with input fuzzyficato in
comparison to the system without it can be assesséallows:

3KN
P=——— =550, 17
K{iog, N) (a7)

which means that the approach becomes in this @pgmximately 500 slower. Therefore, analyzed
implementation of Baldwin’s approach becomes onigye or less, 10 times slower in computation for
presented case. Such difference is much more pramier the future research on optimized or
simplified solution of Baldwin.

3.4.CONCLUSION

Analysis presented in this paper shows that thedartsidered approaches to fuzzy inference are
characterized by linear computational complexitgaading to the number of atomic premises as well as
the size of membership functions’ description.

Results of performed examinations revealed a calaifference in computation time between the
common approach and the implementation of Baldwsotution. However, an analysis considering
fuzzyfication of input data (fuzzy facts) showedattthe method based on a fuzzy truth value has the
potential of possible applications in the areaystems with large knowledge bases.

The analysis of computational complexity for Baldisi reasoning indicated that obtaining
subsequent truth functions have the greatest inf@®n computation time. Algorithms constructinghr
function of a premise and compound truth functioe #ne most important in case of fuzzy systems
containing rules with many atomic premises. The tmwgrovement could probably be obtained for
simplified methods with constant and small numiezlements describing truth functions. Therefone, t
future research should focus on these areas.
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