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PERFORMANCE EVALUATION OF BALDWIN’S FUZZY REASONING  FOR 
LARGE KNOWLEDGE BASES 

The paper compares performance of Baldwin’s fuzzy reasoning based on a fuzzy truth value with the fastest 
available solutions. The analysis is important in order to locate areas where improvement of the first is the most 
significant. Potential fast approach based on the fuzzy truth value would be very interesting for many users applying 
fuzzy systems to solve problems involved with complex knowledge bases. Particularly, all research considering an 
analysis of genes employing DNA microarrays. Such methods very often generate rules with thousands of atomic 
premises. 

The most valuable advantage of Baldwin’s reasoning is preserving a fuzzy relation between a fact and a premise 
in the inference process, where other solutions, especially those commonly used, usually reduce it to only one value. 
Obtaining the method which, from computation time point of view, is comparable with common approaches but offers 
more advanced process of fuzzy reasoning, would be a significant achievement. 

The goal of this analysis is to prepare the future research considering development of Baldwin’s method, which 
computational complexity is comparable to simple, fast and widely used solutions like systems based on the approach 
of Mamdani and Assilan or Larsen. 

1. INTRODUCTION 

Among a great number of different applications, fuzzy systems are widely employed in 
miscellaneous areas of medicine and biology. The whole environment of medical problems is extremely 
uncertain. That is why the soft computing methods are best suited to such domain. 

Some complex problems involve a large amount of data to be analyzed and processed. In this case 
the knowledge base of a fuzzy system contains many rules with compound premise (even thousands of 
atomic premises). Good examples in such area are genes-related problems, which are extensively studied 
by many scientists using different fuzzy approaches [4-6, 8-11, 16-17, 19-27]. Many research problems in 
this area are involved with the analysis of DNA microarrays used in simultaneous measurement of DNA 
expression levels or to genotype multiple regions of a genome. The knowledge bases of fuzzy systems in 
this case often contain complex rules with thousands of atomic premises. 

This paper contains the analysis of computational complexity comparing widely used and fast 
reasoning approaches with the forgotten method of Baldwin. Subsequent sections describe mentioned 
solutions, contain analysis of numerical implementations with conclusion at the end, where further 
research directions are proposed. 

2. FUZZY INFERENCE AND THE FUZZY TRUTH VALUE 

Fuzzy reasoning based on the fuzzy truth value was introduced by Baldwin in 1979 [1], which was 
a few years after the first approach, compositional rule of inference, described by Zadeh in 1973 and 1975 
[28-30]. The main idea differentiating these two solutions is the reasoning domain. The classic 
compositional rule of inference works directly on the truth functions of a fact and a premise. The idea 
for modus ponendo ponens can be expressed by the following equation [7]: 
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where µA'(x), µA(x), µB'(y), µB(y) are membership functions, *T  represents any triangular norm used for 
intersection between a fuzzy fact A' and a fuzzy implication I, which is obtained from a fuzzy premise A 
and a fuzzy conclusion B.  The fuzzy sets are described in universes of discourse X, for a premise and a 
fact, and Y for the conclusion B and the result of the inference B'.  Computational complexity of the 
approach (1) for multi-compound premises becomes problematic because of multi-dimensional analysis, 
which is shown below for only two premises [7]: 
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A very common simplified approach was presented for the first time in 1975 by Mamdani and 
Assilan [18]. The idea used minimum operation as a triangular norm and values of facts (system input) 
were fuzzyfied with singleton, which is described by the following equation for two premises and facts 
[7]: 

  ( )[ ])(,)(,)(minmin)( 21' 21
yxxy BinAinAB µµµµ = , (3) 

where xin1 and xin2 represent input values of the fuzzy system (facts like 50 km/h or -4°C). Larsen [15] 
proposed a very similar approach that used product instead of minimum operation. 
It can be noticed that for calculating one value of µB’(y) membership function the analysis of X1 and X2 
domains is not longer performed. It is very important to emphasize, that (3) is not equivalent to (2) 
considering all available implications, triangular norms and different methods of input fuzzyfication and 
types of membership functions. In general the results obtained for this two equations are different, 
especially for fuzzyfied input and within the ranges of y variable, where 0<µB(y)<1. 

 

Fig. 1. Examples of fuzzy truth values and a truth function modification. 
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The fuzzy reasoning presented by Baldwin [1] moves the inference process into the space of the 
fuzzy truth values [3,1]. Initially, corresponding facts and premises are combined to obtain, so called, 
truth function of a premise τp (membership function of a fuzzy truth value) [1]: 
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Calculated τp represents compatibility of a particular fact with corresponding premise. Depending 
on the level of compatibility and types of µA'(x), µA(x) membership functions, τp can take infinite 
number of forms. Generally, some basic examples were named like absolutely true (τabs.true), true 
(τtrue), undecided (τund.), false (τfalse), very true (τvery true), fairly true (τfair.true), fairly false 
(τfair.false) and very false (τvery false) [1]. 
The truth function can be directly used to modify any linguistic expression [3]. For example: 
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Therefore, assuming a linguistic expression A like “medium temperature”, the new expression Avery 

true is obtained: “it is very true that temperature is medium”. The truth function modification [3] can 
completely change the meaning of an expression like “it is absolutely false that temperature is medium”. 
Fig. 1 presents mentioned truth functions and how they can be used to modify fuzzy expressions. 

Reasoning phase in the method of Baldwin is based only on the fuzzy truth space. Corresponding 
premises and facts are transformed by (4) into truth functions. In case of fuzzy rules containing compound 
premise (i.e. “air temperature is medium and air humidity is high”) all atomic premises can be 
sequentially joined into one collective truth function τp by the following equation [1]: 
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where *N  indicates either triangular norm (T-norm) or triangular conorm (S-norm), depending on a type 
of conjunction (AND or OR respectively). 
The truth function of a premise (τp) is used to obtain the truth function of a conclusion (τq), according to 
the following equation [1]: 
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where I represents any fuzzy implication or triangular norm in case of conjunctive approach. 
Generally speaking, τq represents “truth”  only when premise is true. Otherwise it takes more or less the 
form of “undecided” truth function (τund.). This leads to the final phase of reasoning, where result B’ is 
calculated basing on conclusion B. With τq function the conclusion can be obtained from B using the truth 
function modification, like it was described earlier [3,1]: 

 ( ) ( )( )yy BqB
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∈ ' .  (8) 

Transforming domains of all different premises into one unified truth space can be perceived as an 
advantage from computational point of view (comparing to the compositional rule of inference without 
modifications). The problem of compound premise is no longer complex because in this case the 
reasoning process is characterized by linear computational complexity according to the number of atomic 
premises in a rule, which is precisely analyzed in subsequent sections. 

It is important to emphasize, that this solution preserves a full fuzzy relation between facts and 
premises (in the form of truth functions) through the whole reasoning process. In simplified approaches 
this relation is mapped to only one value in [0,1] range. Nevertheless, the computational complexity of 
the solution remains much higher in comparison to the approaches like (3). Therefore, an analysis finding 
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area of the best possible improvement is very important for future development of the solution, which on 
the one hand is much more efficient but on the other hand preserves all the advantages mentioned earlier. 

3. COMPUTATIONAL COMPLEXITY ASSESSMENT 

Precise analysis of computational complexity in a general case is impossible, because the problem 
is closely related to a particular algorithm performing the designed task. Therefore, some assumptions 
have to be made to confront and assess described methods. 

Fuzzy sets' representation for calculation purposes can be various. Contemporary solutions use 
different approaches to describe and store membership functions. The most common are α-cuts, piece-
wise linear functions, discrete points and mathematical expressions (i.e. exact description of Gaussian 
function). Mathematical expressions are usually the fastest at the first phases of inference process 
(obtaining a membership value), but can be problematic to precisely describe obtained conclusion, 
especially after aggregation of the results. The other approaches are flexible at any phase of calculation. 
However, they are usually involved with higher size of stored data, depending on the accuracy of 
represented membership functions. 

For the rough assessment of computational complexity it was assumed, that a membership function 
is described by N elements, either discrete points, nodes of piece-wise linear function or number of 
analyzed α-cuts. Such assumptions let to evaluate possible algorithms in terms of number of needed 
operations. 

3.1. SIMPLE AND FAST APPROACHES 

Considering the solution of Mamdani and Assilan based on equation (3), the computational 
complexity of the approach can be described by the following expression: 

 ,)1(log2 NKNK +−+  (9) 

where 
log2N : represents calculations needed to obtain a value of membership function described by ordered N 

elements (for either premise or conclusion), 
K : represents a number of atomic premises in a compound premise 
 

Analyzing the expression (9) it can be noticed that the first part is responsible for calculating K 
values for atomic premises, the second for calculating compound membership level (junctions of K values 
from the first part) and the third for obtaining a fuzzy result (based on the fuzzy set of conclusion 
described by N elements). Therefore, computational complexity depending on the N parameter can be 
expressed in big O notation by O(N) for small K values and O(log2N) for high K values and O(K) for the 
analysis depending on the K parameter. 

In contrary to complexity of (2), presented levels clearly indicate linear relation with number of 
atomic premises in a rule. 

 
To verify the validity of the expression (9) according to N parameter, two groups of tests were 

performed. The first group concerned a greater influence of the logarithmic part for high values of K. The 
second group verified a linear relationship in case of low K values. 

Fig. 2 presents results obtained for K=104 and Fig. 3 for K=10. Membership functions of atomic 
premises and conclusions used in all tests were Gaussian. Each result shown on Fig. 2 represent 
computation time for 100 rules and results from Fig. 3 represent time obtained for 5000 rules. 

It can be noticed, that the Fig. 2 clearly demonstrates the influence of logarithmic part and the Fig. 3 
confirms the linear dependence. 
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Fig. 2. Influence of N parameter on computation time for fast systems with K=103. 

 

Fig. 3. Influence of N parameter on computation time for fast systems with K=10. 

The last group of tests were performed to verify a linear complexity of the problem according to K 
parameter. In this case the N parameter was fixed and equal 2023. The results are presented in Fig. 4 and 
contain average time of computations for one rule. 

 

Fig. 4. Influence of K parameter (number of atomic premises in a rule) on computation time for fast systems. 
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3.2. THE APPROACH OF BALDWIN 

Computational complexity of Baldwin’s reasoning strongly depends on the algorithms obtaining the 
described truth functions. Baldwin proposed a simple discrete solution [2] and since 1980 it is very hard 
to find other implementations, because the approach seems to be forgotten. The author of this article 
proposed within the Fuzzlib library [12-14] the solution using piece-wise linear representation of 
membership function. The library contains algorithms constructing truth functions according to chosen 
precision parameter minDY. This allows the system user to control accuracy of representation. For fixed 
minDY the number of elements describing generated truth functions encloses within a small range and it 
does not depend on the number of elements describing membership functions of facts and premises. For 
example, when minDY=10-2 the number of elements describing generated truth function is approximately 
19. In this case computational complexity of obtaining a premise truth function takes the following form 

 ( )NONC DY 22min loglog = , (10) 

where CminDY represents the number of elements describing a truth function depending on minDY 
parameter. For fixed minDY it can be considered as constant and it can be omitted in the big O notation. 

The next phase of Baldwin’s reasoning involves junctions of truth functions obtained for atomic 
premises. The result represents the truth function of a compound premise, which is used in subsequent 
phases of the inference. 
The Fuzzlib library proposes the approach where in order to calculate one point of an output truth 
function the description of two combined truth functions is iteratively analyzed. Therefore, the solution 
can be described by the following expression: 

 
2

minminmin 22 DYDYDY CCC = , (11) 

where 2CminDY represents analysis of two input truth functions, which is performed CminDY times to 
calculate elements of an output truth function.  

 Computational complexity of the next phase in Baldwin’s reasoning, which is obtaining a truth 
function of conclusion described by (7), is at the same level as computing a compound truth function (11). 
It also considers calculations of CminDY elements, where analysis of a premise truth function is needed for 
each element. Therefore, it can be expressed by the following expression: 

 2
minminmin DYDYDY CCC = . (12) 

 The last phase, described by (8), is involved with obtaining the fuzzy result B’ basing on the fuzzy 
conclusion B, which is the truth function modification. This stage considers obtaining a truth function 
value (log2(CminDY)) executed N times, which directly leads to the expression: 

 ( )DYCN min2log . (13) 

Therefore, considering all elements of Baldwin’s inference for one fuzzy rule, the computational 
complexity can be described by the following expression: 

 ( ) ( )DYDYDYDY CNCCKNKC min2
2

min
2

min2min log21log ++−+ , (14) 

which respectively includes: obtaining k truth functions of atomic premises, (k-1) junctions of premise 
truth functions, obtaining a truth function of conclusion and the final fuzzy result. 

Similarly to (9), it can be noticed that (14) is characterized by linear dependence according to K and 
N parameters. These assumptions were verified by numerical tests, the results of which are presented at 
Fig. 5 and Fig. 6. The first group of tests considered dependence on the N parameter. Number of premises 
were fixed in this case to K=100 and minDY=10-2, which gives CminDY  ≈ 19.  
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Fig. 5. Influence of N parameter (size of fuzzy sets description) on computation time for Baldwin’s reasoning. 

The second group of tests examined the influence of K on the time of computation. In this case N 
was fixed to 220 and minDY parameter stayed at the same level as in previous group of tests  
(minDY=10-2). 

 

Fig. 6. Influence of K parameter (number of atomic premises in a rule) on computation time for Baldwin’s reasoning. 

The examinations directly show linear dependence according to N and K parameters, which confirm 
the assumptions leading to final complexity (14). 
 

Although the approach of Baldwin is characterized by the same level of computational complexity 
as simple common solutions (considering dependence on N and K parameters) it is also dependent on 
CminDY. This parameter is crucial to the final time of computation. The smaller CminDY is, the less influence 
it has on (14) and the solution works faster. Additionally, (14) includes more sub-expressions then (9), 
which also can change the complexity in some cases.  
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3.3. COMPARING COMPLEXITY OF THE APPROACHES 

Results presented on Fig. 4 and Fig. 6 let to compare the time complexity of the two analyzed 
methods. Computations for one rule containing 5000 atomic premises (K=5000) took approximately 
16 [ms] for simple approach and 8,5 [s] for the implementation of Baldwin’s method. Considering the 
parameter N fixed respectively at the level of 2023 and 220 and linear dependence in both cases, it lets to 
calculate a relative rate of performance P: 

 4900
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which indicates, that the full implementation of Baldwin’s solution is in this case almost 5000 times 
slower then the fastest, simplified approaches. However, it needs to be emphasized that the analyzed 
method based on a fuzzy truth value was implemented without any simplifications and includes 
fuzzyfication of the input data. The full approach of Zadeh, based on the compositional rule of inference 
(1),(2), is characterized by exponential complexity depending on a number of atomic premises (K). That 
is the main reason why it is not applied in this form. 

Computational complexity of simplified approaches considering input fuzzyfication could be 
described by the extended version of (9): 

 ,)1()2( NKNNK +−++  (16) 

where the K(N+2N) part is responsible for fuzzyfication of K facts and finding the highest value of their 
intersection with corresponding K premises. Considering large number of K the first part is dominant and 
the modification significantly increases the complexity from K(log2N) to 3KN. Assuming N at the level of 
2023 and K=5000 the performance rate P of the simplified solution with input fuzzyfication in 
comparison to the system without it can be assessed as follows: 

 ( ) 550
log

3

2

≈=
NK

KN
P , (17) 

which means that the approach becomes in this case approximately 500 slower. Therefore, analyzed 
implementation of Baldwin’s approach becomes only, more or less, 10 times slower in computation for 
presented case. Such difference is much more promising for the future research on optimized or 
simplified solution of Baldwin. 

3.4. CONCLUSION 

Analysis presented in this paper shows that the two considered approaches to fuzzy inference are 
characterized by linear computational complexity according to the number of atomic premises as well as 
the size of membership functions’ description.  

Results of performed examinations revealed a colossal difference in computation time between the 
common approach and the implementation of Baldwin’s solution. However, an analysis considering 
fuzzyfication of input data (fuzzy facts) showed that the method based on a fuzzy truth value has the 
potential of possible applications in the area of systems with large knowledge bases.  

The analysis of computational complexity for Baldwin’s reasoning indicated that obtaining 
subsequent truth functions have the greatest influence on computation time. Algorithms constructing truth 
function of a premise and compound truth function are the most important in case of fuzzy systems 
containing rules with many atomic premises. The most improvement could probably be obtained for 
simplified methods with constant and small number of elements describing truth functions. Therefore, the 
future research should focus on these areas. 
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