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SEGMENTATION OF BIOMEDICAL SIGNALS
USING AN UNSUPERVISED APPROACH

The paper presents an unsupervised approach toetlioah signal segmentation. The proposed segmentati
process consists of several stages. In the fiegt, st state-space of the signal is reconstructethd next step, the
dimension of the reconstructed state-space is egtlbg projection into principal axes. The finalpsiavolves fuzzy
clustering method. The clustering process is agpliehe kernel-feature space. In the experimerddi, the fetal heart
rate (FHR) signal is used. The FHR baseline and atweeleration or deceleration patterns are the rsajnal
nonstationarities but also the most clinically intpat signal features determined and interpretedoimputer-aided
analysis.

1. INTRODUCTION

Pattern recognition methods play an important moelanalysis of biomedical signals. Recognition
process contains two main stages: a pre-processagg and a classification stage [10, 12]. In tfee p
processing stage, feature values of the recogrubgatts are estimated. Features are variablecangt
information about processed objects. The estimi@aitires create a feature-space. Features aralpiace
different regions in the feature-space for différebjects. The second stage deals with classifinatif
objects. In the classification process, the featy&ce is transformed into a decision space. Tdreréwo
approaches for the decision space creation. Thedpproach (supervised) requires a learning sehd
second approach (unsupervised) the decision spaweated using only a recognition set. In moseésas
the unsupervised recognition involves a clustemmethod [1, 8]. In the presented work, at the stsige
the state—space is reconstructed by applying thkerfeamethod [16] and then the state-space is giege
onto its principal axes. This operation correspotudshe first stage of the general pattern recaogmit
procedure, i.e. the feature-space is created. &aire-space contains typical aggregations of tdjec
“clouds” and “loops”. In most cases, the “cloud’r@sponds to the baseline of the analyzed sigrtalew
the “loop” corresponds to these parts of the signal significantly differ from the baseline [6]in&lly,
the obtained feature—space is transformed intcsaecspace by a fuzzy clustering method [9, 11].

The experimental part concerns a chosen group aindulical signals registered during fetal
monitoring. Fetal heart rate (FHR) signal is thamsource of information on the fetal state in pras
day perinatal medicine. The fetal heart rate igattarized by two main components: the basal fedatt
rate (baseline) and the variability of FHR. The afavm representing “a kind of a mean” of the fetal
heart rate over time is referred to as the baselihe FHR variability is associated mainly with gho
lasting accelerations or decelerations of the fétdrt rate. The baseline and the accelerations ol
decelerations events are the main nonstationarjure=a of the FHR signal. During routine fetal
monitoring the FHR signal is usually analysed as-bour recordings, and the nonstationarities are
recognized to be the most clinically important feaes of FHR signal determined and interpreted both
classical visual and in computer-aided analysisofectly determined FHR baseline is a precondition
for correct recognition of the acceleration andefie@tion patterns. Even a small inaccuracy inRH&
baseline estimation may significantly distort thetetttion of accelerations or decelerations, whigy m
subsequently lead to false interpretation of cihisymptoms. According to clinical guidelines [#ie
baseline is the mean level of the FHR when thistable, accelerations and decelerations being absen
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Acceleration is defined as a transient increadeemut rate of 15 bpm or more and lasting 15 seconds
more. Deceleration is a transient episode of hadet slowing bellow the baseline level of more than
bpm and lasting 10 seconds or more. Considerirtgatiteleration and deceleration patterns diffey anl
the direction of FHR changes and their recognitiMolves the same problems, the experimental aisalys
is limited to accelerations only

2. METHODS

2.1. STATE-SPACE RECONSTRUCTION METHOD

The applied technique is an outcome of the thebnoalinear dynamical systems. In deterministic
dynamical systems, the post-transient trajectorthefsystem is frequently confined to a set of {®oin
the state-space, called an “attractor” [16]. Tlaesspace can be reconstructed by the Taken’s etimged
operation. For a given signalthe point in the reconstructed state—space sngby

x, =[x(n), x(n+7),---, {n+(m-1)7)[ 1)

wherex(n) is the processed signaljs the time lag andth is the embedding dimension. The prod{mnot
1)7 is the embedding window. In many applications, tinee lag 7=1 is advantageous [6, 14]. So,
henceforth this time lag value will be used in ttisdy.

2.2. PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) is a techniquar fextracting a structure from
high—dimensional data sets [13, 15]. PCA is anagtimal transformation of the coordinate systems in
which the data are described. The new coordinatesy(known as the principal coordinates) is ole@in

by the projection onto the so-called principal agéthe data. LefX ={xl,x2,---,xn} be a dataset, where
x, 00™. Each element from the dataset is describedntfgatures associated with the time stafip

Determination of the principal axes begins with teeng the data samples and then computing the
sample covariance matrix, i.e.

C=23 0 ~xx X' @

1
N i=1
whereX is the sample mean,

N

x= oY @)

i=1

and N =|X| is the cardinal number of the dataset.

The principal axeg; are equal to the eigenvectors that corresponletdargest eigenvalues of the
covariance matrixC. By definition, the following dependence holdsetru

Cy =Ax, (4)

whereA, 2 A, 2---> A are eigenvalues @.

The projection ontd—-dimensional principal space is a linear transforomabf x; according to the
following equation:

y, =" (x -X), (5)
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wherey, 00" is thel-dimensional representationxf and ™ = [y1,~--y,]T :
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Fig. 1. An example of the fetal heart rate signihwwvo marked components: baseline and acceleraR@ht part presents the
reconstructed state-space trajectory onto firstgvicipal directions. The trajectory was obtaifiedthe
embedded dimension m=30, and the timetkal

Figure 1 shows an example of the proposed apprdaicttiudes the original fetal heart rate signal
as well as the projection of the original signakoomwo principal axes. In the original signal two
characteristic parts can be distinguished. The fiest of the signal contains the baseline witlatreély
small fluctuations. This part corresponds to thdoud” in the principal space. A size of the
agglomeration is related to the amplitude of flations around the baseline. The second part of the
signal contains an acceleration episode. The aatigle episode is an increase of the fetal heéet emd
it is represented by the “loop” in the principabgction.

3. CLUSTERING METHOD

3.1.FUZZY C-MEANS

The fuzzy c—means clustering method [1] is the qiypte—based method, where the objective
function (clustering performance index) is defirasdfollows:

IUNV)=XY ulx - (6)

where:U is the partition matrixy is the set of centroids,is the number of groups, ahtis the number
of objects. The FCM seeks the centroids by miningzihe objective function (6) with respect to the
probabilistic constraint, i.e.

iuik=1 O1<k<N )

i=1

The parametep controls the fuzziness of the membership degraesally p=2. By applying the
Lagrange multipliers method, the optimal valuethefpartition matrix are given by

¢ (d 2 ‘}/p—l
u, = Z{ﬁ] , [Ol<i<c, andOdl<k<N (8)
J

whered? =[x, —v,|". The optimal values of the centroids are given by
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N
ZuiEXk
v, =*—— [l<i<c. 9)
U

k=1

The membership degrees and the centroids can kmagplly the expectation—maximization (EM)
algorithm. In the E—step, the partition matrix [gated applying (8), while in the M—step the ceidiso
are computed based on (9). The algorithm recuss&ceeds until the termination criteria is sadidf

3.2.KERNEL FCM

Let @ be an arbitrary non-linear mapping function frongioal feature space to a space of higher—
dimensionality (kernel space). The mapping procedillows to apply a linear classifier in the kernel
space, while in the feature space the original leralcould be non-linear and not separable lingay
15]. In the kernel space, the dot product can bpressed by a Mercer kernél given by
K(x,y) = d(x)" d(y), wherex, y belongs to the feature space. Hence, the distartbe kernel space can
be replaced by a Mercer kernel function (kernedkri[7, 13]. The mapping functio® need not be
known. Table 1 lists some of the most widely useh&l functions [5].

Table 1. List of common kernel functions

Gaussian GX{—M} 250
o? g

Polynomial  (xy +6) 6>0,d0ON
Sigmoidal  tanHx'y+68) 6>0

In the kernel FCM (KFCM) algorithm, the centroide éocated in the kernel space. The distance betwee
data sampley and the centroig in the kernel space with a mapping functi@rs given by:

di :”(D(Xk)_ViHZ- (10)

The KFCM method minimizes the objective functiohd®en by:

=3y ol )-v[ =3y urd? a1

For the Euclidean distance, the optimal valuesearitroids located in the kernel space are defined as
follows:

V_:kzl—' Di:l...,c_ (12)

Applying (12), the distance in the kernel space (eh be expressed as follows

d :||¢(Xk)_vi ”2 = ((D(Xk)_vi)T (q)(xk)_vi)'

(13)
=d(x, ) D(x, )-20(x, ) v, +V]v,

Using the expression for the centroids (12) inftrenula (13) results in:
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N N

ZN:uupK(Xk’Xl) Zzu"p i (X" )

dii :”(:D(Xk)_vi”2 = K(Xk'Xk) - 22 N .- (14)

2o (B

Table 2. Main steps of the proposed segmentatigorighm

1) Initialize the embedded dimension
and the time lag
2) Find the reconstruction of the state—

space applying the Taken’s theory on
the analyzed signal

3) Compute the principal directiorisand
transform the state—space into the
principal—space

4) Fix the number of clustecs

5) Find the partition matrix applying the
KFCM method

Applying the Lagrange multipliers with respect ke tprobabilistic constraint, the optimal valuesiod
partition matrix can be calculated as follows:

ey
u, = Z(j_'k] Oi=1---,candk=1---,N, (15)
=\ Qi

whered? is given by (14).
The clustering procedure in the kernel space cateberibed as follows: update the partition matrix

U using (12), until the termination criteria is ségd [3, 4, 17]. The table 2 lists the main stagethe
proposed algorithm.

4. EXPERIMENTS

In this section, we present some experiments withasen group of biomedical signals by means
of the proposed algorithm. The termination critémisghe clustering procedure is defined as follows:

i i‘ui“’) -uP™| <10 (16)

i=1 k=1

whereu” denotes the value of the partition matrix in ¢hth iteration.

The maximum number of iteration is fixed H2O. In most cases, the termination criteria was Badis
before maximum number of iterations was reachedunexperiments, the time lag is fixgdl. An
example of the FHR signal (with duration of 200is)presented in Fig. 2. As it was mentioned, the
presented fragment contains an acceleration pafemthe segmentation the following parametersewer
set: the embedding dimensian=60, the number of groups=2 (the baseline and the acceleration
pattern), as the kernel the polynomial kernel w10 andd=4 was chosen. The sum of the first two
eigenvalues of the covariance matrix is equal%b of the sum of all eigenvalues. Therefore, only th
first two principal directions are taken into acnburhe obtained results are also presented iRithe2

129



SELECTED TASKSOF MODERN MEDICAL DIAGNOSTICS

FHR Feature space

N
< ol
1ol
20l
sl
-40
125 S S N o . . ‘ ‘ ‘
20 40 B0 80 100 120 140 180 180 200 -1300 -1250 -1200 -1150 —-1100 —-1050 —-1000
t [5] A
Segmented signal
165 % T
160 [ " bl
+F +
155 1
1
150 3: *{
+ +
= i
E st B
s .

125
0

' L L
50 100 150 200

t[s]

Fig. 2. Segmentation of the FHR signal. The origsighal is presented on the top-left and its reordion in the feature space, for the
embedding dimensiom=60, on the top-right. At the bottom the segmentedaiggpresented with the recognized acceleratidtepa
depicted by crosses and the baseline by red dots

The second FHR signal in Fig. 3 contains two aca&bn patterns. Similarly as in the previous
experiment, our goal was to find them. In this ¢cdse number of clusters was3 due to “the valley”
between the two accelerations.
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Fig. 3. Segmentation of the FHR signal. The left pagsents the original signal and the right thggrsented signal. The recognized
accelerations patterns are depicted by crossesatley between them by stars and the baselineobs; &or this case the embedded
dimension isn=50

5. CONCLUSIONS

The objective of the presented investigation washiiow an unsupervised approach to signal
segmentation. Kernel fuzzy c-means is applied inppaposed method as the clustering method. Hence,
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the problem of signal segmentation can be desciilyethtural words such as high, low or baseline. Fo
the segmentation process, only the number of dksiegments (if exist) is required. As one of the
segmentation results, the partition matrix is ob#di The partition matrix can be used in more
sophisticated recognition systems. The obtainetinpireary results show advantages of the proposed
approach. Our current work concentrates on impr@rgsof the efficiency (mainly in the clustering
stage) by applying the CUDA technology from NVIDIA.
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