Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents 15 texture features based on GLCM (Gray-Level Co-occurrence Matrix) and GLRLM (Gray-Level Run-Length Matrix) to be used in an automatic computer system for breast cancer diagnosis. The task of the system is to distinguish benign from malignant tumors based on analysis of fine needle biopsy microscopic images. The features were tested whether they provide important diagnostic information. For this purpose the authors used a set of 550 real case medical images obtained from 50 patients of the Regional Hospital in Zielona Góra. The nuclei were isolated from other objects in the images using a hybrid segmentation method based on adaptive thresholding and kmeans clustering. Described texture features were then extracted and used in the classification procedure. Classification was performed using KNN classifier. Obtained results reaching 90% show that presented features are important and may significantly improve computer-aided breast cancer detection based on FNB images.
Rocznik
Tom
Strony
109--115
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Institute of Control and Computation Engineering, University of Zielona Góra, Zielona Góra, Poland
autor
autor
autor
Bibliografia
- [1] AL-KOFAHI Y, LASSOUED W, LEE W, ROYSAM B., Improved Automatic Detection and Segmentation of Cell Nuclei in Histopathology Images, IEEE Trans. on Biomedical Engineering, 2010, Vol. 57, No. 4, pp. 841–852.
- [2] BRAY F., REN J., MASUYER E., FERLAY J., Estimates of global cancer prevalence for 27 sites in the adult population in 2008, Int. J. Cancer, DOI: 10.1002/ijc.27711, 2012.
- [3] FERLAY J., SHIN H., BRAY F., FORMAN D., MATHERS C., PARKIN D., Globocan 2008 v2.0, cancer incidence and mortality worldwide: Iarc cancerbase no. 10., International Agency for Research on Cancer, Lyon, France, 2010, online: http://globocan.iarc.fr (accessed on 30/08/2012).
- [4] FILIPCZUK P., KOWAL M., OBUCHOWICZ A., Automatic breast cancer diagnosis based on k-means clustering and adaptive thresholding hybrid segmentation, Image processing and communications challenges 3, Advances in Intelligent and Soft Computing, 2011, Vol. 102, pp. 295–303.
- [5] FILIPCZUK P., KOWAL M., OBUCHOWICZ A., fuzzy clustering and adaptive thresholding based segmentation method for breast cancer diagnosis, Computer recognition systems 4, Advances in Intelligent and Soft Computing, 2011, Vol. 95, pp. 613–622.
- [6] GONZALEZ R.C., WOODS R.E., Digital Image Processing, 3rd ed., Prentice Hall, New Jersey, 2008.
- [7] HARALICK R., SHANMUGAM K., DINSTEIN I., Textural features for image classification, IEEE Trans. On Systems, Man and Cybernetics, 1973, Vol. 3, No. 6, pp. 610–621.
- [8] HASSAN M.R., HOSSAIN M.M., BEGG R.K., RAMAMOHANARAO K., MORSI Y., Breast-cancer identification using hmm-fuzzy approach, Computers in Biology and Medicine, 2010, Vol. 40, pp. 240–251.
- [9] HREBIEŃ M., STEĆ P., OBUCHOWICZ A., NIECZKOWSKI T., Segmentation of breast cancer fine needle biopsy cytological images, Int. J. Appl. Math and Comp. Sci., 2008, Vol. 18, No. 2, pp. 159–170.
- [10] JELEŃ, Ł. FEVENS, T., KRZYŻAK A., Classification of breast cancer malignancy using cytological images of fine needle aspiration biopsies, Int. J. Appl. Math and Comp. Sci., 2008, Vol. 18, No. 1, pp. 75–83.
- [11] KANUNGO T., MOUNT D.M., NETANYAHU N.S., PIATKO C.D., SILVERMAN R., WU A.Y., An efficient k-means clustering algorithm: Analysis and implementation, IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, Vol. 24, pp. 881–892.
- [12] KOWAL M., FILIPCZUK P., OBUCHOWICZ A., KORBICZ J., Computer-aided diagnosis of breast cancer using Gaussian mixture cytological image segmentation, Journal of Medical Informatics & Technologies, 2011, Vol. 17, pp. 257–262.
- [13] KOWAL M., FILIPCZUK P., KORBICZ J., Hybrid cytological image segmentation method based on competitive neural network and adaptive thresholding, Pomiary, Automatyka, Kontrola, 2011, Vol. 57, No. 11, pp. 1448–1451.
- [14] LLOYD S.P., Least squares quantization in PCM, IEEE Trans. Information Theory, 1982, Vol. 28, No. 2, pp. 129–137.
- [15] MACKAY D., Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003.
- [16] MARCINIAK A., OBUCHOWICZ A., MONCZAK R., KOŁODZIŃSKI M., Cytomorphometry of Fine Needle Biopsy Material from the Breast Cancer, Proc. 4th Int. Conf. on Computer Recognition Systems CORES' 05, Springer, 2005, pp. 603–609.
- [17] MITCHELL T.M., Machine Learning, McGraw-Hill, 1997.
- [18] NAZ S., MAJEED H., IRSHAD H., Image segmentation using fuzzy clustering: A survey, Proc. 6th Int. Conf. Emerging Technologies, ICET 2010, 2010, pp. 181–186.
- [19] SURI J.S., SETAREHDAN K., SINGH S., Advanced Algorithmic Approaches to Medical Image Segmentation, Springer-Verlag, London, 2002.
- [20] ŚMIETANSKI J., TADEUSIEWICZ R., ŁUCZYŃSKA E., Texture Analysis in Perfusion Images of Prostate Cancer - a Case Study, Int. J. Appl. Math and Comp. Sci., 2000, Vol. 20, No. 1, pp. 149–156.
- [21] TANG X., Texture information in run-length matrices, IEEE Trans. On Image Processing, 1998, Vol. 7, No. 11, pp. 1602–1609.
- [22] UNDERWOOD J.C.E., Introduction to biopsy interpretation and surgical pathology, Springer-Verlag, London, 1987.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0026-0012