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GLCM AND GLRLM BASED TEXTURE FEATURES 
FOR COMPUTER-AIDED BREAST CANCER DIAGNOSIS 

This paper presents 15 texture features based on GLCM (Gray-Level Co-occurrence Matrix) and GLRLM 
(Gray-Level Run-Length Matrix) to be used in an automatic computer system for breast cancer diagnosis. The task of 
the system is to distinguish benign from malignant tumors based on analysis of fine needle biopsy microscopic images. 
The features were tested whether they provide important diagnostic information. For this purpose the authors used a set 
of 550 real case medical images obtained from 50 patients of the Regional Hospital in Zielona Góra. The nuclei were 
isolated from other objects in the images using a hybrid segmentation method based on adaptive thresholding and k-
means clustering. Described texture features were then extracted and used in the classification procedure. Classification 
was performed using KNN classifier. Obtained results reaching 90% show that presented features are important and 
may significantly improve computer-aided breast cancer detection based on FNB images. 

1. INTRODUCTION 

According to the International Agency for Research on Cancer and the National Cancer Registry in 
Poland, breast cancer is the most common cancer among women. Worldwide, in 2008, there were 
1,384,155 diagnosed cases of breast cancer and 458,503 deaths caused by the disease [2, 3]. In 2009, 
there were 15,752 diagnosed cases in Polish women, 5,242 resulted in death. There has also been an 
increase in the number of  breast cancer cases by 3-4% a year since the 1980s. The effectiveness of 
treatment largely depends on early detection of the disease. An important and often used diagnostic 
method is the so-called triple-test. It is based on 3 medical examinations and is used to achieve high 
confidence in the diagnosis. The triple-test includes self-examination (palpation), mammography or 
ultrasonography imaging, and FNB (Fine Needle Biopsy) [22]. FNB is an examination that consists in 
obtaining cytological material directly from the tumor. The collected material is then examined under a 
microscope to determine the prevalence of cancer cells. This approach requires deep knowledge and 
experience of the cytologist responsible for the diagnosis. Automatic morphometric diagnosis can so-
called make the results objective and assist inexperienced specialists. It also allows screening on a large 
scale where only uncertain cases would require additional human attention. Along with the development 
of advanced vision systems and computer science, quantitative cytopathology has become a useful 
method for detection of diseases, infections as well as many other disorders [8, 20]. 

The paper presents some work in progress on a fully automatic breast cancer diagnostic system 
based on analysis of cytological images of FNB material. The task of the system is to mark a case as 
benign or malignant. In our previous work this was done using morphometric and topological features of 
nuclei like area or the distribution of the nuclei in the image [4, 5, 12, 13]. Recently we acquired a new 
database of cytological images of FNB from the Regional Hospital in Zielona Góra, Poland. The images 
were captured using entirely new technology. They offer much higher level of detail in comparison to the 
previous database. Pathologists from the hospital identified the distribution of chromatin inside nuclei, 
visible on the new images, as another important feature which was not included in our previous work. In 
cancer cells one might often notice distinct lumps of chromatin while in healthy ones the chromatin is 
usually distributed uniformly. This dependence can be represented by texture features. In this paper we 
propose 15 texture features based on GLCM (Gray-Level Co-occurrence Matrix) and GLRLM (Gray-
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Level Run-Length Matrix) which might be used even on roughly segmented nuclei. In order to 
distinguish pixels representing the nuclei we used adaptive thresholding and k-means clustering. The 
entire automatic diagnostic procedure as well as the outcomes of the conducted experiments are described 
further in the paper. Achieved results are promising and allow looking optimistically to the future of the 
system. 

The paper is divided into 6 sections. Section 1 introduces breast cancer diagnosis. Section 2 
presents the process of acquisition of medical images used for testing. Section 3 shows nuclei 
segmentation. Section 4 describes in detail texture features used for the diagnosis. Section 5 delivers 
experimental results obtained using the proposed approach. The last part of the work includes conclusions 
and bibliography. 

2. ACQUISITION OF MEDICAL IMAGES 

The testing database contains 550 images of the cytological material obtained by FNB. The material 
was collected from 50 patients of the Regional Hospital in Zielona Góra, Poland. Biopsies without 
aspiration were performed under the control of ultrasonograph with a 0.5 mm diameter needle. Smears 
from the material were fixed in spray fixative (Cellfix by Shandon) and dyed with hematoxylin and eosin 
(h+e). The time between preparation of smears and their preservation in fixative never exceeded three 
seconds. Cytological preparations were then digitalized into virtual slides using Olympus VS120 Virtual 
Microscopy System. The system consists of a 2/3" CCD camera and 40× objective giving together 0.172 
µm/pixel resolution. The average size of the slides is approximately 200,000×100,000 pixels. The scans 
were prepared using EFI (Extended Focal Imaging). EFI is scanning a preparation several times with the 
focus plane located at different places at the Z axis. Then the frames are put together in such a way as to 
keep only the sharp areas of each of them. This allows for extended focal depths impossible to obtain 
using only optics. Next on each slide a pathologist selected 11 areas which were converted to 8 
bit/channel RGB TIFF files of size 1583×828 pixels compressed with lossless LZW algorithm. The 
number of areas per patient was recommended by the specialists from the hospital [16] and allows for 
correct diagnosis by a pathologist. The database contains 25 (275 images) benign and 25 (275 images) 
malignant cases. All cancers were histologically confirmed and all patients with benign disease were 
either biopsied or followed for a year. 

3. NUCLEI SEGMENTATION 

Classification of tumor malignancy is based on features extracted from nuclei.  This requires 
isolating the nuclei from the background and other objects in the image (e.g., red blood cells). In literature 
many different approaches have been already proposed to extract cells from microscope images [1, 9, 10]. 
This task is usually done automatically, using one of the well-known image segmentation techniques  
[6, 18, 19]. However, reliable nuclei segmentation is a challenging task. FNB images are particularly 
difficult due to the way they are prepared. The material is taken by a needle and smeared on a slide. This 
may result in partial destruction of tissue structure, and sometimes even nuclei. The cells are usually not 
uniformly distributed on the preparation. They often form three-dimensional shapes, and they may be in 
contact with and/or occluded by other cells. In the presented approach we used automatic segmentation 
procedure that integrates results of image segmentation from two different methods. The algorithm uses 
adaptive thresholding segmentation to distinguish all dark objects (nuclei, red blood cells and others) 
from bright background. Next, nuclei are isolated from other objects using clustering algorithm. 

The key idea of thresholding is to separate objects from the background based on pixel intensity 
fluctuations. Local threshold is calculated for each pixel using intensities of pixels from its neighborhood. 
This area was defined as a square window of size 75x75 pixels. The threshold is the mean intensity value 
of pixels inside the window. 

The next step of image processing is distinguishing nuclei from the rest of the objects. This task is 
performed based on color information. It was decided to define three types of objects according to their 
color: nuclei, red blood cells and the background. The idea of image segmentation using clustering 
algorithms boils down to a search for clusters of pixels in color space. Derived clusters represent objects 
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that are characterized by a similar color. In the considered cases, the k-means algorithm was applied to 
calculate centers of 3 clusters and to determine pixel assignments. 

The clustering procedure of k-means algorithm is based on minimizing the within-cluster sum of 
squared distances for K clusters: 
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where X and Y defines the size of the analyzed image, µx,y,k is a function specifying whether (x, y)-th pixel 
belongs to the k-th cluster, 2
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where 3
, ℜ∈yxc  is a vector of the coordinates of the (x ,y)-th pixel in RGB space and 3ℜ∈kv  is a vector 

of the coordinates of the k-th cluster center in RGB space. The k-means clustering procedure iteratively 
changes pixel assignments based on the distance to the nearest mean (cluster center) and updates the 
cluster centers to match the proper means of the data points they are responsible for. Detailed expressions 
for iterative updating cluster centers and pixel assignments can be found in the following papers [11, 14, 
15]. 

The cluster representing nuclei is identified by comparing mean values of their coordinates. Since 
nuclei are the darkest objects the lowest mean value indicates cluster representing the nuclei. The 
obtained pixel assignment is then used to separate the nuclei from the rest of objects. A problem arises 
when the clustering algorithm is not able to generate a correct cluster due to relatively small number of 
pixels representing the nuclei. However, such cases are very rare and most images under consideration are 
correctly segmented using the described procedure. Finally, all objects smaller than 2.32 µm2 
(approximate smallest area of a nucleus) were removed. Sample segmentation results are presented in  
Fig. 1. 

  

  

  

Fig. 1. Original images (top), adaptive thresholding (middle) and final segmentation result (bottom). 
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4. TEXTURE FEATURES 

After isolation of nuclei from the images it is possible to extract texture features. For each image we 
extract the 15 features described below based on GLCM and GLRLM. At the end all the features were 
standardized. 

4.1. GRAY-LEVEL CO-OCCURRENCE MATRIX FEATURES 

The first four features are based on GLCM. The N×N matrix P, where N is the number of gray 
levels, is defined over an image to be the distribution of co-occurring values of pixels at a given offset. In 
other words each element of P specifies the number of times a pixel with gray-level value i occurs shifted 
by a given distance to a pixel with the value j [7]. In our case we calculate the mean of four GLCMs 
determined for offsets corresponding to 0°, 45°, 90° and 135° using eight gray-levels. p is the normalized 
co-occurrence matrix: 

- contrast - the intensity contrast between a pixel and its neighbor over the whole image: 
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- correlation - the correlation of a pixel to its neighbor over the whole image: 
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- energy - also known as uniformity, the sum of squared elements in the GLCM: 
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- homogeneity - the closeness of the distribution of elements in the GLCM to the GLCM diagonal: 
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4.2. GRAY-LEVEL RUN-LENGTH MATRIX FEATURES 

The remaining eleven texture features are based on GLRLM. The N×M matrix p, where N is the 
number of gray levels and M is the maximum run length, is defined for a given image as the number of 
runs with pixels of gray level i and run length j [21]. Similarly to the GLCM, we compute run length 
matrices for 0°, 45°, 90° and 135° using eight gray-levels: 

- short run emphasis: 
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- long run emphasis: 
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- gray-level nonuniformity: 
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- run length nonuniformity: 
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- run percentage: 
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where nr is the total number of runs and np is the number of pixels in the image, 
- low gray-level run emphasis: 
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- high gray-level run emphasis: 
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- short run low gray-level emphasis: 
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- short run high gray-level emphasis: 
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- long run low gray-level emphasis: 
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- long run high gray-level emphasis: 
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5. EXPERIMENTAL INVESTIGATIONS 

The features were tested for the classification efficiency, which is defined as a percentage of 
successfully recognized cases among all cases. For classification we used KNN classifier with value k=5. 
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There were 50 patients: 25 benign and 25 malignant. Each patient was represented by 11 images. The 
effectiveness was tested using the leave-one-out cross-validation technique [17], where a single case was 
a full set of 11 images representing 1 patient. This means the images belonging to the same patient were 
never at the same time in the training and testing set. The final diagnosis was obtained by a majority 
voting of the classification of individual images belonging to the patient (e.g. if 6 images were classified 
as benign and 5 as malignant then the final diagnosis for the patient would be benign). 

The results show that there are four features providing important diagnostic information. They are 
run length nonuniformity, high gray-level run emphasis, short run high gray-level emphasis and long run 
high gray-level emphasis giving from 68% to 74% efficiency as an individual features (see Table 1). We 
also performed sequential forward selection to find optimal set of features to check the maximum 
efficiency using textural features. The best set is presented in Table 1 and gave very good result of 90%. 

Table 1. The results of classification using individual texture features and an optimal set of features. 

 Feature Efficiency Sensitivity Specificity 
GLCM contrast 50 % 0.44 0.56 

correlation 44 % 0.44 0.44 
energy 56 % 0.60 0.52 
homogeneity 48 % 0.36 0.60 

GLRLM short run emphasis 46 % 0.52 0.40 
long run emphasis 34 % 0.32 0.36 
gray-level nonuniformity 62 % 0.56 0.68 
run length nonuniformity 74 % 0.72 0.76 
run percentage 42 % 0.32 0.52 
low gray-level run emphasis 44 % 0.40 0.48 
high gray-level run emphasis 72 % 0.68 0.76 
short run low gray-level emphasis 38 % 0.44 0.32 
short run high gray-level emphasis 68 % 0.64 0.72 
long run low gray-level emphasis 42 % 0.56 0.28 
long run high gray-level emphasis 70 % 0.68 0.72 

Optimal set 
of features 

run length nonuniformity,  
high gray-level run emphasis, 
short run high gray-level emphasis 

90 % 0.84 0.96 

6. CONCLUSIONS 

The aim of the work was to test whether texture features might provide essential diagnostic 
information in automatic breast cancer diagnosis based on analysis of FNB images. To perform the 
experiment we used 550 cytological images from patients of the Regional Hospital in Zielona Góra. In 
order to segment nuclei we used a hybrid method based on adaptive thresholding and k-means clustering. 
We tested 15 GLCM and GLRLM texture features. The results of classification showed that not all of 
them are valuable in diagnostic process. However, some of them deliver important information giving up 
to 74% efficiency used individually. An optimal combination of features determined by sequential 
forward selection gave 90%, which is very promising result. This shows texture features are important in 
application to breast cancer detection and combined with morphometric and topological features may 
significantly improve computer-aided diagnosis. 
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