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LOCAL EMBEDDING AND DIMENSIONALITY REDUCTION IN DETECTION 

OF SKIN TUMOR TISSUE 

This article shows the limitation of the usage of dimensionality reduction methods. For this purpose three 

algorithms were analyzed on the real medical data. This data are multispectral images of human skin labeled as tumor 

or non-tumor regions. The classification of new data required the special algorithm of new data mapping that is also 

described in the paper. Unfortunately, the final conclusion is that this kind of local embedding algorithms should not be 

recommended for this kind of analysis and prediction. 

1. INTRODUCTION 

The analysis of big sets of data may become difficult with the increase of the amount of the data. 

This problem may be considered in two levels: the level of the number of objects or in the level of the 

number of attributes (features etc.). The first kind of problem is just a computational one: if the current 

hardware (or software) can not build the model then the faster machine with bigger resources (like the 

amount of memory or the number of processors) or newer version of software should be used. However, 

the second kind of this problem is more complicated. Even if we use the fastest computer in the world 

with the infinite memory it may occur that the chosen algorithm will not build the model. 

If we consider a typical parametric model of regression - the polynomial one - we see that for the 

purpose of building the model of the dependence that is the polynomial of the n
th

 order we have to know 

at least n+1 points. Building more advanced models where there are more than one independent variables 

also requires bigger number of training objects. Situation is even more difficult when the nonparametric 

models are built. It is common criterion that we should have at least 10 objects for each parameter of the 

model. It may also occur that the number of model parameters is much bigger than the number of object 

features. It may be easily observed when the artificial neural networks are taken into consideration: the 

complexity of the model depends on the network configuration (the number of layers and the number of 

neurons in the hidden layer) and not only on the number of independent variables. 

The solution of the problem is commonly known as the dimensionality reduction. There are lot of 

methods that may be used like principal component analysis (PCA) [3, 4, 7], multidimensional scaling 

(MDS) [1, 5] statistical rankings [6] or heuristic algorithms [6]. They may be generally divided into two 

groups: feature selection and feature extraction. Algorithms from the first group find the subset of original 

features (statistical rankings or heuristic algorithms). The main advantage of this group is that the result 

may simplify the process of data acquisition. Algorithms from the second group generate the new set of 

features on the basis of the whole set of original ones. This means that usually the model will still require 

the whole set of original variables. 
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Fig. 1. Acquisition device. 

In this paper the problem of feature extraction for the purpose of medical hyperspectral data 

classification is raised. On the basis of the multispectral images human skin cells are labeled as tumor or 

non-tumor. The assignment was prepared by medical experts. For the purpose of feature extraction we 

used three algorithms of nonlinear dimensionality reduction called local embedding. 

This paper is organized as follows: it starts with the description of our previous works on 

hyperspectral images. Then algorithms of dimensional reduction are briefly described. Afterwards the 

result of experiments are presented and discussed. 

2. ANALYSIS BACKGROUND 

Medicine is one of the most popular domain of image analysis application. Our research focused on 

analysis of multispectral images of  human skin and the ability of classifying skin regions as tumored or 

non-tumored. Data were captured with the usage of the device shown on the Fig. 1. It contained camera, 

liquid crystal filter and the endoscope. Skin fragments were lighted twice: with white and blue light. 

White light was chosen to observe which components of the visible light spectrum are absorbed by 

different regions. Blue light was chosen as it was expected that tumor regions should absorb this band of 

wave more strongly. 

Experts marked regions with tumors and then on the basis of the 21 channel multispectral images 

further analysis was performed. From the various algorithms applied for the data named as "White" and 

"Blue" it occurred that almost all of them give better results when the "White" data are analyzed. It also 

occurred that the best algorithm is the artificial neural network (ANN) that gave almost 95% classification 

accuracy. Details of the experiment may be found in [5]. The visualization of the classification result is 

shown on the Fig. 2. 

As the ANN occurred to be the best algorithm it became interesting to examine whether all 21 

channels are essential for the purpose of human skin diagnosis. In the paper [3] several methods of feature 

selection were applied and the climbing strategy was approved as the best: it needed only 6 components 

to achieve the comparable ability of correct classification. 
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Fig. 2. Sample results visualization (red – tumor, green – healthy). 

3. ALGORITHMS OF DIMENSIONALITY REDUCTION 

3.1. CLASSICAL MULTIDIMENSIONAL SCALING 

Classical Multidimensional Scaling is the method of dimensionality reduction implemented in the 

Matlab software (mdscale). This algorithm performs scaling but in the case when the Euclidean 

distance is used it also returns the eigenvalues e of YY' where Y is the matrix of transformed coordinates. 

In general case of n-dimensional original data, when k < n elements of e are greater than 0 then the k first 

components of Y should be considered as the k-dimensional approximation of the whole n-dimensional 

space. For more details the Matlab documentation refers to [4]. 

3.2. NONCLASSICAL MULTIDIMENSIONAL SCALING 

Nonclassical Multidimensional Scaling performs non-metric multidimensional scaling on the N X N 

dissimilarity matrix (matrix of objects distances). It is possible to define the maximal number of 

coordinates in the output matrix. The Matlab documentations refers also to [4] but points out two other 

books as the origin of the algorithm [1, 2].  

3.3. NONLINEAR DIMENSIONALITY REDUCTION 

In the paper [6] the method of nonlinear dimensionality reduction is described. It is based on 

analyzing the connection between points considered as the connection in the graph. Generally, the 

algorithm consists of three steps. The first step is building the graph G over all data points. Two points i,j 

are connected iff one of the two conditions is fulfilled: they are closer than predefined margin ε (this 

model is called ε-Isomap) or if the point i is one of the k nearest neighbors of j (the model called k-

Isomap). The weight of the edge (i,j) is the distance in the original feature space. 

In the second step the shortest path between points is computed. The default algorithm in authors' 

Matlab Isomap implementation is the Dijkstra's algorithm but it is also possible to use the Floyd's one. 

The last step is constructing of d-dimensional embedding. If DG is the matrix of shortest path 

between points (vertexes) in the graph, the p  is the p-th eigenvalue (in decreasing order) of the matrix 

( )GD  and i

pv  is the i-th component of the p-th eigenvector  then the p-th component in the d-
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dimensional coordinate vector yi equals i

p pv . The operator   is defined as ( ) / 2D HSH   , where S 

is the matrix of squared distances ( 2

ij ijS D ) and H is called the "centering matrix" 1/ij ijH N  . 

4. EXPERIMENTS AND RESULTS 

4.1. DATA DESCRIPTION 

The data contain 1250 objects from two classes. Each of the classes has comparable number of 

objects. This set is the subset of objects that were analyzed in the previous paper [3] due to the 

complexity of the analysed algorithms. The data are divided into three sets: train (1000 objects), tune (125 

objects) and test (125 objects). Classes in every set are balanced in the same way as in the whole data set. 

Experiments of dimensionality reduction were performed with Matlab. The process of training artificial 

neural networks was performed with the Statistica Automated Neural Network (SANN) tool. 

4.2. THE TRAIN TEST MODEL 

Descriptions of dimensionality reduction techniques, presented in the previous point, lead to the 

conclusion that there are no mathematical formula for data transformation. In other words the reduction of 

dimensionality of the whole train set would not provide the way of test data transformation. This creates 

the situation when for every test point the analogical dimensionality reduction must be performed. The 

algorithm of transformation of the test data into the low dimensionality space is presented below. 

Let us denote the train test as Tr, test set as Tt. The reduced train set is denoted as ρ(Tr) and the 

reduced test set is denoted as ρ (Tt). 

After reduction of train test Tr dimensionality for every test object to: 

1. Add test object to the iteration set Ti = Tr    { to }. 

2. Find the d-dimensional coordinates of points from Ti 

3. Move the new d-dimensional coordinates of to to the ρ(Tt). 

The pseudocode of generating the low dimensional coordinates for test objects is shown below. The 

ALGORITHM means one of the method of dimensionality reduction. 

 

function REDUCE_TEST(Tt, Tr) 

( )rT   

rn T  

for 1i n   

   ( )o rt T i  

   { }i t oT T t     

   ( )iT   ALGORITHM( iT ) 

   ( ) ( ) ( )( )r r iT T T i     

   1i i   

end for 

return ( )rT  

end function 

 

where ( )( )iT i  means the coordinates of the i-th point from the test set in the dimensionality 

reduced space. 
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4.3. RESULTS 

For every dimensionality reduction algorithm the maximal number of new coordinates was 

generated (21). Then for every k first components (k = 1, 2, …, 21) the artificial neural network was built. 

Figures 3-5 show how the classification accuracy on the train, tune and test set changes due to the 

increase of the considered coordinates. On the first figure (Fig. 2.) the results for classical 

multidimensional scaling are presented. Generally for every considered number of components the 

accuracy of test data classification does not change and remains on the level 55%. It is worth to remind 

that classes were balanced so this results can be interpreted as the results of ,,random classifier''. 

 

Fig. 3. Graphical presentations of train, tune and test set classification accuracy for cmdscale algorithm. 

On the Fig. 4. the results of mdscale algorithm are presented. In this case for several small numbers 

of components (4, maximally 5) we observe that, indeed, the increase of number of new coordinates 

improves the classification accuracy. It can even give better results on the test set than on the train or tune 

set. However, the further increase (six components and more) of the number of components reduces the 

classifier ability of prediction. It also occurs that the decrease of accuracy does not achieve as low level as 

in the case of cmdscale algorithm. 

 

Fig. 4. Graphical presentations of train, tune and test set classification accuracy for mdscale algorithm. 
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The next figure (Fig. 5.) shows the results of the last analyzed method -- the Isomap. This results 

are comparable to the results of cmdscale. The accuracy oscillates around the level of 58% what is almost 

the same as cmdscale 57%. 

 

Fig. 5. Graphical presentations of train, tune and test set classification accuracy for Isomap algorithm. 

Statistical comparison of each method are shown in the Table 1. In this table the minimal and 

maximal classification accuracy on the test set are presented, as well as the average accuracy and the 

standard deviation of the accuracy. 

Table 1. Statistical comparison of the classification accuracy (in percent) of three models of dimensionality reduction. 

 cmdscale mdscale Isomap 

min 52.0 58.4 49.6 

max 62.4 83.2 68.0 

avg 57.37 72.34 58.02 

std   2.68   6.39   4.64 

 

More detailed results of algorithms performance are presented in the Table 2. For each algorithm 

three columns are shown: the error on the train, tune and the test set. 

Figures from 4 to 5 are the illustration of the data from the Tab. 2. 

5. CONCLUSIONS 

In this paper three methods of dimensionality reduction were analyzed due to the aim of tumor 

tissue detection. On the basis of the previous experiments it was expected that it is possible to limit the 

number of components without the lose of classification accuracy. After experiments it occured that none 

of popular methods called local embedding may be applied successfully. One of the most important 

problems is that for those method there are no explicitly given formula of transformation new data into 

reduced dimensionality. The only possible way is the algorithm described in the section 4.2: for each new 

object the new local embedding should be performed and the previously built model should be applied for 

the transformed components of the test object. General and detailed results show that it is possible to built 

the accurate model on the known data (accuracy of classification of the tune set reaches the maximal level 

for cmdscale and mdscale algorithm) but the model would not give satisfactory results for new data. 
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Table. 2 Results of classification accuracy (in percent) of mapped data. 

cmdscale  mdscale  Isomap 

# train tune test  # train tune test  # train tune Test 

1 55.0 59.2 56.8  1 55.0 59.2 56.8  1 55.0 59.2 56.8 

2 68.0 68.0 56.0  2 68.0 68.0 56.0  2 68.0 68.0 56.0 

3 56.8 55.2 62.4  3 56.8 55.2 62.4  3 56.8 55.2 62.4 

4 64.3 68.8 57.6  4 64.3 68.8 57.6  4 64.3 68.8 57.6 

5 79.9 89.6 52.0  5 79.9 89.6 52.0  5 79.9 89.6 52.0 

6 70.3 73.6 56.8  6 70.3 73.6 56.8  6 70.3 73.6 56.8 

7 85.3 85.6 57.6  7 85.3 85.6 57.6  7 85.3 85.6 57.6 

8 85.8 84.8 56.8  8 85.8 84.8 56.8  8 85.8 84.8 56.8 

9 84.8 87.2 56.8  9 84.8 87.2 56.8  9 84.8 87.2 56.8 

10 92.7 95.2 56.8  10 92.7 95.2 56.8  10 92.7 95.2 56.8 

11 96.6 96.8 55.2  11 96.6 96.8 55.2  11 96.6 96.8 55.2 

12 93.3 94.4 62.4  12 93.3 94.4 62.4  12 93.3 94.4 62.4 

13 98.0 98.4 60.0  13 98.0 98.4 60.0  13 98.0 98.4 60.0 

14 93.5 93.6 54.4  14 93.5 93.6 54.4  14 93.5 93.6 54.4 

15 95.2 94.4 60.0  15 95.2 94.4 60.0  15 95.2 94.4 60.0 

16 95.8 96.8 60.0  16 95.8 96.8 60.0  16 95.8 96.8 60.0 

17 99.4 97.6 60.0  17 99.4 97.6 60.0  17 99.4 97.6 60.0 

18 97.1 97.6 58.4  18 97.1 97.6 58.4  18 97.1 97.6 58.4 

19 99.0 100. 55.2  19 99.0 100. 55.2  19 99.0 100. 55.2 

20 99.1 95.2 52.8  20 99.1 95.2 52.8  20 99.1 95.2 52.8 

21 97.0 92.0 56.8  21 97.0 92.0 56.8  21 97.0 92.0 56.8 
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