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UNCERTAINTY AND IMPRECISION IN MEDICAL DIAGNOSIS SUPPORT 

The paper concerns methods of representation of uncertainty and imprecision in successful medical support 
applications. Advantages of the methods are pointed out and some of their drawbacks are explained. A method of 
simultaneous representation of imprecision of symptoms and uncertainty of diagnostic rules is proposed. The method 
suggests an extension of the Dempster-Sahfer theory for fuzzy focal elements. An example of the method is given and 
their links as well differences from previous approaches are discussed. Conclusions about uncertainty and imprecision 
representation in medical diagnosis support are provided. 

1. INTRODUCTION 

Medical diagnosis is a very complex task since different kinds of information must be considered 
with various certainty and next combined. Answers from an interview with a patient are often ambiguous. 
Results of a primary examination are usually linguistically formulated. Outcomes of laboratory tests are 
judged in relation to their norms. Other diagnostic items like images, parameters of electrical signals etc., 
also require interpretations. Moreover, sometimes examinations cannot be done, for instance because of 
a patient’s state, and then the diagnosis must be taken in the lack of evidence. 

A result of an examination can be attached with a precision measure that indicates its accuracy of 
matching a symptom. For instance, the body temperature of 37°C matches ‘fever’ with less precision than 
the temperature of 39°C. If there is no thermometer available the ‘fever’ can be find out with low 
precision by touching a forehead. These are trivial examples, but indeed all accessible evidence should be 
used during a diagnosis. Simultaneously, the low precision of evidence should be taken into account. 

Relations among symptoms and diseases generally are also uncertain. The same symptoms may 
occur with different diseases and one disease may have various manifestations. A headache may be 
a symptom of flu or migraine, while migraine may manifest by the headache or a partial vision loss. Of 
course, symptoms and diseases are related with different frequency of occurrence. The frequency of 
occurrence or belief that a symptom is relevant to a disease may be expressed by a certainty measure. 

It might be concluded that two measures: imprecision and uncertainty should be used in diagnostic 
reasoning. Nevertheless, many researchers do not make distinction between precision and certainty and 
regard them the same concept. It happens particularly when one of the measures is less important in 
reasoning (e.g. diagnostic rules have equal significance) or reliable information about the measure is not 
available. Still, all diagnosis support tools use some confidence measure. Depending on an approach the 
measure is considered as probability, membership function, belief or plausibility. Although researchers 
work on diagnosis support for many years, they only partly solve the problem of a measure choice that is 
appropriate for a problem. The present work shows some approaches denoting their strong and week 
points and at the end suggests an original method of modeling imprecision and uncertainty measures in 
diagnosis support. 

2. MODELING UNCERTAINTY OF A DIAGNOSIS 

Let us consider uncertainty of a diagnosis as a measure of significance of symptoms in the 
diagnosis. It is often considered as a probability value or a membership function of a fuzzy set. Statistics 

                                                 
1 Institute of Electronics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice 

ewa.straszecka@polsl.pl 



INVITED PAPER 

 12 

are often used to evaluate probability of the diagnosis given symptoms. Information from statistics can be 
applied in the diagnosis support in two ways. Firstly, frequencies of occurrence of symptoms interpreted 
by experts are directly used to evaluate significance of the symptoms in the diagnosis. Secondly, 
necessary a priori and conditional probabilities are found by means of the frequencies and next the Bayes' 
formula is used. Let us discuss the first manner. 

Frequencies of occurrence are not exclusive knowledge about relations among symptoms and 
diagnoses. They are usually supplemented by experts' heuristics. In this way medical indices were 
formulated. They were introduced into medical practice much earlier than computers entered hospitals 
and they are still in use, thus they are worthy of notice. Roughly speaking, the medical index is a table 
that concerns one disease, in which each symptom has an assigned score. The score is an integer positive 
or negative value. It can be given by means of a step function (Fig.1). The scores should be summed up 
for symptoms occurring with a patient. Next the sum is interpreted by means of limits that are established 
for the table and imply conclusions. These limits are determined according to statistics. The conclusions 
are usually of the form: ‘suspected disease’, ‘further investigation are necessary’ and ‘probably not ill’. 
Examples of such indices are Crooks Index [12] and Murray Index [19] for thyroid glad diseases or 
INFARCTEST [36] for a heart infarct risk estimation. The indices are simple and useful tool for quick 
evaluation of many symptoms at a primary  
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Fig. 1. Original score step function for the systolic blood pressure in INFARCTEST. 

stage of a diagnosis. Unfortunately, computerization of indices is worthless for diagnosis support because 
it is very difficult to add a new symptom to an existing set of findings or to change an evaluation  
of a medical procedure. In both cases the change of the algebraic sum is difficult to assess. Hence, 
updating each time requires a new statistical investigation. Obviously, complexity of the investigation 
increases along with the final number of symptoms. Thus, it may happen that the performance of an 
enlarged index in worse than that of the previous version [31]. Therefore, medical indices are not 
a suitable tool for computer diagnosis support. They can be suitable for formulating fuzzy rules, though 
we cannot expect that in each case a fuzzy conclusion will be exactly the same as the conclusion indicated 
by the original score [31]. 

The second way to use statistical information consists in a determination of conditional and a priori 
probabilities which are next used in Bayes' formula. In the diagnosis support the formula is used in the 
following form [15, 16]: 
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where ND stands for lack of the disease, hence P(D)+P(ND)=1. Bayesian approach is important in early 
medical diagnosis support [22], but it is not free from substantial drawbacks. Some of necessary 
probability values are available, but the other are difficult to obtain. Calculation of the P(D/S) requires the 
P(D) value which is usually available because frequencies of occurrence of diseases in the population are 
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often known. The P(S/D) is determined on the basis of examinations done in hospitals or outpatient 
clinics. The matter is much more complicated with the P(S/ND). In practice it is not found for a 
population of healthy people, but for a ‘control group’ in which there are patients who do not suffer from 
the D disease, but generally are not healthy. This may result in a false evaluation of the probability. 
Moreover, the S symbol in (1) stands both for set of symptoms or a single symptom (one-element set). 
Thus, to be exact, the P(S/D) and the P(S/ND) should be determined individually for each possible 
combination of symptoms. It is practically impossible. Conditions of a statistic research are very strict and 
often impossible to sustain. Because of all these drawbacks the diagnosis support based on the Bayes’ 
formula (1) is either simplified to trivial cases or used in rather a flexible manner, ignoring mathematical 
constraints. For instance in Iliad expert system an iterative Bayes’ formula is proposed [15]: 
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The Iliad authors assume that a posteriori probability of the disease calculated for one symptom becomes 
a priori probability of the disease when the next symptom is considered. This formula solves the problem 
of calculation complexity, but do not works satisfactory for many symptoms because the change of the 
final P(D) value decreases along with the number of symptoms [32]. A human diagnostician do not make 
distinction between e.g. P(D)=0.9901 and P(D)=0.9999 and may disregard subsequent symptoms. In 
order to prevent it, Iliad presents differential diagnosis that makes it possible to sort possible hypotheses 
according to their probability. This opportunity is known already from earlier medical expert systems, 
like for instance INTERNIST [2], [16] and is convenient if the list of hypotheses is relatively short.  
A comparison between Iliad and INTERNIST is justified, as both are expert systems in the domain of 
internal diseases. It is also interesting that INTERNIST employs positive and negative score of 
hypotheses. 

Another well-known expert system in which probability measures are used is MYCIN [30]. Perhaps 
it is the most successful medical expert system, thus its uncertainty representation deserves discussion. 
MYCIN's certainty factor (CF) is defined in as [5]: 
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where h denotes a hypothesis and e – evidence, MB is called the measure of belief and MD – the measure 
of disbelief. The latter are calculated in the following way [5]: 
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The certainty factor equals: CF = MB – MD and since MB, MD ∈ [0,1] then CF ∈ [-1,1]. Thus, in terms 
of the certainty factor a situation in which evidence does not carry information can be represented by  
CF = 0. This is an important indication that the probability in its classical form may be insufficient to 
represent a diagnostic conclusion. A success of MYCIN is sometimes explained by its narrow and well-
defined domain of expertise [7]. MYCIN’s rules are considered in contexts [30], which means that  
a relatively small number of highly adequate rules are fired at each stage of inference. This ensures the 
great robustness and makes easier updating certainty factors. However, the CF is not free from 
deficiencies. 

Figures 2 – 4 concerns two hypotheses: h1 and h2 when evidence e is given and for the both 
hypotheses P(hi/e)>P(h) as well as probability values are different form 0 and 1. In such conditions 
CF(hi, e)=MB(hi, e), according to (3), (4). In Fig.2 six cases of a priori and conditional probability values 
are presented as well as MB values calculated for the cases. A priori probabilities are equal: P(h1)=P(h2) 
and for conditional probabilities P(h1/e)<P(h2/e). Values of measures MB1≡MB(h1, e) and MB2≡MB(h2, e) 
preserve the conditional inequality, i.e. MB(h1, e) < MB(h2, e) which agrees with common sense. The 
cases in Fig.3 for which P(h1)>P(h2) and P(h1/e)>P(h2/e) with resulting MB(h1, e) > MB(h2, e) are also 
judged intuitively right. However, in Fig.4 we observe that P(h1/e)=P(h2/e), P(h1)>P(h2) and 
MB(h1, e) < MB(h2, e), which is counterintuitive. 
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Fig. 2. Values of the belief measure for two hypotheses with P(h1)=P(h2) and P(h1/e)<P(h2/e). 
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Fig. 3. Values of the belief measure for two hypotheses with the same P(hi/e)-P(hi) difference. 
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Fig. 4. Values of the belief measure for two hypotheses with P(h1/e)=P(h2/e) and P(h1)>P(h2). 

This phenomenon was noticed and criticized by several researchers [16] because a priori probability 
values for all hypotheses should be equal to keep consistence of CF. Another disadvantage of this factor 
is a complicated and inconsistent calculation of CF for chain of rules [5]. However, it cannot be denied 
that the introduction of the CF started new trends in diagnosis support. It has been accepted that a priori 
probabilities which are necessary for calculations can be subjective probabilities [10] given by experts 
[16]. Yet, experts determine values of subjective probabilities in different ways [8]. Thus, inquiries about 
these probabilities must be repeated for each application. 

There is a number of methods of diagnosis support based on Bayes’ formula in which calculations 
are performed in a network [25, 26]. Their aim is to make easier and clearer calculations, particularly 
updating probability values. Still, disadvantages of acquiring knowledge remain. Hence, there are good 
reasons to look for different methods of diagnosis support, particularly as it is confirmed that humans use 
uncertain concepts in a diagnostic inference, but they do not follow exactly the classical probability 
principles [22]. 

A probability theory that avoids the condition which is the most unfortunate for the diagnostic 
inference is the Dempster-Shafer theory of evidence [9]. In this theory focal elements are defined as 
predicates with assigned basic probability values. The dependence condition is absent in the definition of 
the assignment. Its values can be obtained from experts. This makes the theory convenient for diagnosis 
support [3]. The way of its use will be shown in the fourth section. 

Another approach to diagnostic inference modeling makes use of the fuzzy set theory [37]. Fuzzy 
sets were recognized a good tool for human knowledge representation and soon after their introduction 
began trials of their application in medicine. Although designing membership functions for medical 
parameters and modeling diagnostic inference by means of fuzzy rules turned out to be more complex 
than researchers supposed, expert systems, like for instance CADIAG [1, 20], were finally built. A rule in 
CADIAG-2 is for instance [16]: 

 

0.7]=[  strong,=0.8],=[ often,with

cancer pancreatic maybeTHEN

serum in (POA) antigen oncofetal pancreatic elevatedIF

CCOO µλµλ =
 (5) 

In (5) O denotes occurrence, C - confirmation, λ – linguistic values and µ – numerical values. Linguistic 
descriptions: ‘elevated’, ‘often’, ‘strong’ can be represented by membership functions. Yet, this rule is not 
exactly a fuzzy rule because its premise is fuzzy (‘elevated’), but its conclusion is crisp (‘pancreatic 
cancer’), unless the conclusion is assumed to be the disease risk with the linguistic evaluation ‘maybe’. If 
‘maybe’ is understood as certainty of the rule then it is difficult to include its membership function in the 
fuzzy inference. In such a situation the classical fuzzy inference based on a fuzzy relation or a fuzzy 
implication is questionable. Hence, fuzzy inference in this system consists in operating on membership 
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functions of the premises and on memberships µO and µC. A similar rule model appears also in other 
applications [24, 35], in which classifiers rather than inference systems are used to support the diagnosis.  

Another deviation from classical fuzzy inference is an abductive formulation of rules: ‘IF 
symptom(s) THEN diagnosis’. A diagnostic rule that represents causal dependence which is used in 
classical probability approach is ‘IF disease THEN symptom(s)’. In the CASNET expert system based on 
semantic networks such rules are also used [34]. Logically the same rule should be used in fuzzy 
inference, since the scheme of reasoning is the generalized modus ponens: (a' ∧ (a ⇒ b)) ⇒ b'. However, 
heuristics are usually formulated in an opposite manner and so are the fuzzy rules. The violation of logics 
influences inference effects. 

Results of the first stage of fuzzy inference are membership functions of conclusions which next 
need to be aggregated. A choice of an aggregation operator is both crucial and difficult. The aggregation 
operator cannot be maximum since then conclusion of the greatest membership becomes the final 
conclusion. This is false as such a conclusion results from few considered symptoms. The choice of the 
right aggregation operator is application-oriented. These problems, briefly mentioned here, are wider 
explained in [32]. Hence, it seems that the fuzzy set theory is convenient for representing knowledge in 
diagnosis support but is not ready for straightforward use in the diagnostic inference. 

3. IMPRECISION OF SYMPTOMS 

Probability-based methods of inference generally ignore the problem of unknown symptoms or 
manifestations that partly match disease symptoms. However, these problems are common in medical 
practice and without their solution diagnosis support tool will always be awkward. The fuzzy set theory is 
much more convenient because matching a symptom and evidence can be evaluated in the [0,1] interval. 
It is also possible to express values of linguistic variables by means of membership functions. This is 
particularly important for symptoms which are difficult to estimate, for instance pain, that is evaluated by 
means of the visual analog scale (VAS) [13]. Nevertheless, the majority of symptoms is linguistically 
formulated. Even laboratory test results are interpreted by in linguistic categories [14]. Linguistic 
expressions can be represented by membership functions. The membership function becopmes the 
characteristic function if the symptom is represented in two-valued logic (e.g. ‘struma’). Membership 
functions may be determined for a numerical scale (laboratory test result), for a generally assumed scale 
(‘great pain’), as well as for an occasionally chosen scale (‘normal appetite’). 

A shape of the membership function is not crucial as during inference numerical rather than 
symbolic calculations are done. A minor change in membership function does not change its 
interpretation [6]. Still, results of applications may strongly depend on several important points. They can 
be determined by means of descriptive statistics of data [28], neural networks [29] or/and experts’ 
opinions [21]. Triangular functions can result from fuzzy identification [33] similar to procedures used for 
control [31]. An extended discussion on membership function shapes is provided in [27]. Let us assume 
trapezoidal shape of the membership function. Its formula is [4]: 
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Fig. 5. Crucial points for membership functions. 

This formula shows that crucial points are values of the domain in which the function changes its values 
from zero (xα, xδ) and from one (xβ, xγ) (see Fig.5). If the function represents ‘normal’ values of a 
laboratory test then (xα, xδ) are usually norms of the test. Still, in [32] points in which the membership 
function has 0.5 values, i.e. (x’α, x’δ) are suggested for the norm limits. The latter reference points are in 
better agreement with intersection points of probability distributions for low, normal and high results of a 
laboratory test [32]. In medical applications the ‘normal’ function is often the basic function for a 
parameter and the other two, i.e. ‘low’ and ‘high’ can be constructed as its complements. Nevertheless, if 
membership functions represent experts’ knowledge, the functions that represent abnormal values of a 
parameter may be individually created as an average opinion of several experts. It is doubtful if step 
functions included in medical indices are a good basis to define the functions since it is not known if an 
upper or lower approximation of the steps should be made. In this case training data are helpful and a 
kind of identification should be performed [31]. 

Evidence is matching a symptom to the extent that is minimum between the membership function 
of the symptom and the function of evidence, which is usually a singleton. Yet, evidence represented by 
the proper membership function will certainly be of use, as it is pointed out in [18] and fuzzy input 
information is already proposed in [11] and [23]. However, a method of creating membership functions 
for any linguistic value entered by a computer user should be elaborated to use fuzzy sets both as 
symptoms and evidence. 

4. THE DEMPSTER-SHAFER THEORY WITH FUZZY FOCAL ELEMENTS 

Many researchers agree that joining probability-based and fuzzy approaches can solve complex 
problems [8]. It possible to combine the Dempster-Shafer theory (DST), which represents uncertainty of 
the rule ‘IF symptom(s) THEN disease’, with the fuzzy set theory that describe imprecision of symptoms. 
In the DST focal elements are defined for which the basic probability assignment (BPA) is determined as 
[17]: 

 ,1)(,0)( == ∑
∈Sa

amfm  (7) 

where m is the BPA, f stands for the false predicate and S is a set of focal elements a. Focal elements are 
predicates, so they can describe symptoms. The focal element may concern one or several symptoms, i.e.:  

 ,,...,1},{or lilll nisasa ==≡  (8) 

where l is the rule and i is its condition index. The BPA is determined for a chosen diagnosis and can 
represent correlations, frequency of occurrence or experts’ evaluations. When a patient is consulted, 
several up to all focal elements are confirmed by his/her manifestations. The manifestations are evidence 
in the diagnostic inference. The belief and plausibility measures are calculated for the evidence in the 
following way [17]: 
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where d stands for the disease and t for truth. The right arrow ⇒ in (9) and (10) does not denote an 
implication, but an assignment. Thus, the set of focal elements and the BPA are knowledge and Bel and 
Pl results of a consultation. If all focal elements are single-symptom then always Bel(d)=Pl(d), otherwise 
Bel(d)≤Pl(d). If manifestations do not confirm symptoms at all, then Bel(d)=Pl(d)=0. The truth of the 
assignment a ⇒ d can be interpreted by means of a precision measure which has values in the [0,1] 
interval. This measure can be the membership of evidence in fuzzy sets representing symptoms. Hence, 
membership functions are constructed for each focal element and each symptom in the element is 
confirmed by evidence at the level [32]: 

 )],(*)([sup xx ii
x

i µµη ∧=
∈X

 (11) 

where µi(x) is the membership function of the i-th symptom in the focal element and µi* (x) is the 
membership function of the appropriate piece of evidence. The latter can be the characteristic function, 
the singleton or the proper membership function. The matching level for the whole focal element is 
calculated in different ways for the belief or plausibility measures because of various formulations of 
summation conditions in (9) and (10). When the belief measure is considered then the level is [32]: 
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while for the plausibility measure [32]: 
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where nl stands for the number of symptoms in the al focal element. The η(l) indicate to which extent 
evidence confirms the focal element and θ(l) the amount of available information about the focal element. 
 
Such matching is done for all focal elements and elements for which η(l) is greater than an assumed T 
threshold are selected. The threshold can be evaluated using the value of the plausibility measure [32], but 
in simple cases it can be deduced on the basis of membership functions. It should correspond their cross-
points. After the selection, the BPA values for the chosen focal elements are summed up. This process is 
done for several diagnoses – at least for two: ‘healthy’ and ‘ill’. Belief values for the diagnoses are 
compared and the greatest value, if it is unique, indicate the winning diagnosis. If the greatest value 
occurs for more than one diagnosis, there is no valid conclusion. Let us present an example that shows 
similarities and differences of the presented method to other probability-based approaches. 

4.1. EXAMPLE 

Let us consider three diagnoses (e.g. diseases d1, d2 and health h) for which rules of two-condition 
premises are formulated. The conditions refer to linguistic values A, B and C (for instance: ‘low’, 
‘medium’ and ‘high’) of two symptoms (e.g. laboratory tests) X and Y. The rules are listed in Tab.1. The 
first column of the table should be read as follows: IF X is A and Y is A THEN diagnosis is d1. The other 
columns make analogical rules, except for columns with ‘–‘ instead of the diagnosis – these rules are not 
formulated. Thus, the knowledge base is not complete, which often happens in medical diagnosis. 
Moreover, various diagnoses have different number of rules. Membership functions for the X and Y 
symptoms are presented in Fig.6. 
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Table 1. Rules for three diagnoses and two symptoms. 

Rule Rd1
(1) Rd1

(2) – Rd1
(3) Rh

(1) Rh
(2) – Rd2

(1) Rd2
(2) 

X A A A B B B C C C 
Y A B C A B C A B C 

Diagnosis d1 d1 – d1 dh dh – d2 d2 
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Fig. 6. Membership functions for linguistic values of rule premises. 

 

Fig. 7. Belief and plausibility values for {xi,yk} changed with 0.05 step in the [0, 5] interval. 

 

Fig. 8. Belief and plausibility values for {xi,yk} changed with 0.05 step in the [0, 5] interval. 
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The BPA values for the rules are assumed equal for each rule in the diagnosis, so, md1(Rd1
(i))=1/3, 

i=1,2,3, mh(Rh
(i))=1/2, i=1,2, md2(Rd2

(i))=1/2, i=1,2. Thus, an increase of the belief and plausibility values 
is not equal for each diagnosis if evidence confirms its premise. Yet, not the Bel and Pl values themselves 
make diagnosis, but their comparison for different diagnoses. 
Now, let us test the knowledge base, i.e. rules and their BPAs, for various values of X and Y simulating 
patient’s observations. The values make couples {xi, yk} ∈[0,5]×[0,5], i, k=1,…,101. Although the Bel and 
Pl values are not easy to interpret (see Fig.7), results of Bel comparison make consistent diagnoses if the 
right threshold is chosen (Fig.8). The threshold value depends on membership functions and in this 
example the most appropriate value is T=0.5. If the threshold in too low (e.g. T=0.2 for the leftmost 
diagram in Fig.8) then diagnoses may faulty overlay each other or areas without the final diagnosis occur 
due to diagnoses conflict. If the threshold corresponds cross-points of membership functions then the 
diagnoses are the most appropriate (T=0.5 for the diagram in the center). If T is too high then areas of lack 
of diagnosis are large (T=0.8 in the rightmost diagram). 

Thus, in this method, like in indices or probability-based approaches, the values of the BPA are 
summed up, but the introduction of the imprecision measure makes it possible to decide when a symptom 
influences the diagnosis. The threshold can be changed during diagnostic process and in this way 
unknown or not clear symptoms can be included in the diagnosis in a lack of better evidence. The 
comparison of the belief values correspond with hypotheses ordering in well-known expert systems. 
Calculations for databases confirmed good robustness of the method [32]. 

4.2. DISCUSSION 

The proposed extension of the Dempster-Shafer theory and its use for medical diagnosis support 
combines probability and fuzzy approaches and makes it possible to represent knowledge and to perform 
inference in a manner that agrees with human intuition. Weights of diagnostic rules are represented by the 
BPA values, while fuzzy sets describe linguistic values of symptoms. The method follows suitable 
patterns of previous approaches to the diagnosis support. The sum of the BPA values is calculated to 
obtain belief values, which is similar to solutions used in described probability-based support tools. 
Premises are formulated correspondingly to fuzzy rules. Simultaneously, the proposed method introduces 
improvements. The belief and plausibility measures represent uncertainty whereas levels of matching 
symptoms and observations evaluates imprecision of the diagnosis. Hence, both certainty and precision of 
the diagnosis is considered at the same time. The opportunity to use imprecision measure to represent 
symptoms is very convenient if linguistic variables or visual analog scale have to be used. Thus, 
advantages of the fuzzy approach are preserved and drawbacks of fuzzy conclusion aggregation are 
avoided.  Calculations are simple and a human user in not forced to interpret directly the belief or 
plausibility values.  The method is easy to explain for a medical user, which is very important, since 
physicians are very cautious about diagnoses obtained from ‘black-boxes’. It makes opportunity to use 
any kind of evidence if more reliable examinations cannot be performed, but maintains information about 
the low precision of inference. Furthermore, any kind of evidence, crisp or fuzzy can be used. 

By means of the proposed method it is also possible to combine basic probability assignments 
determined for various populations or by experts. The method is extensively presented and results of 
numerous tests are provided in [32]. 

5. CONCLUSIONS 

This study presents several approaches to determining measures of uncertainty or imprecision that 
have been practically implemented and proved useful in practice. Achievements of these solutions should 
be appreciated, but disadvantages should be kept in mind in case of new implementations. It is worth to 
search for new methods of uncertainty and imprecision representations using experience of the previous 
diagnosis support tools. 

Medical knowledge is changing rapidly so a diagnosis support system should be easy to update and 
cannot use built-in values of certainty factors because a small change in laboratory procedure or 



INVITED PAPER 

 
 

21 

a different interpretation of examination results must be possible to include immediately in such a system. 
The system should be also user-friendly and work according to intuitively clear and understandable 
principles. 

The diagnosis support system should be designed for a very well-determined domain with 
consistent knowledge. A rule-based system seems to be the most convenient framework. However, it is 
probably impossible to cover a wide scope of medical problems, for instance the whole knowledge about 
internal diseases, by one set of rules and use only certainty factors to select rules suitable for 
a consultation. The rules have to be organized in some subsets which frequently are called contexts. 
Human experts often subconsciously use the context when they see a patient - sex, appearance, habits and 
environment influence the diagnosis. These subsets are not disjunctive and symptoms included in rules 
are not independent, so the classical probability axioms will be always violated in attempts of conditional 
probability use in diagnosis support. Simply, the necessary conditional probabilities cannot be obtained in 
the lack of training data. On the other hand, subjective probabilities can be used in theories avoiding 
classical probability limitations, like the Dempster-Shafer theory of evidence. Thus, such theories should 
be explored for new implementations. 

It is inevitable to use both uncertainty and imprecision measures in medical inference. Imprecision 
is typical for representation of human knowledge which is always a part of medical knowledge bases. It 
can be modeled by fuzzy sets, still designing of their membership functions is not a trivial task. Fuzzy 
sets may need corrections if they are used to evaluate results of slightly different medical procedures or 
they are used in diagnosis support for various populations. Modifications are also advantageous for basic 
probability assignments. Hence, uncertainty measures that are assigned to the rules and imprecision 
measures corresponding rule premises should be calculated for a database. Therefore, it is beneficial to 
implement diagnosis support systems in a hospital information system and update the measures by 
population characteristics. The proposed method of diagnosis support that uses the extended Dempster-
Shafer theory creates such an opportunity. Rules can be formulated and afterwards provided with 
appropriate values of the basic probability assignment and membership functions can be found for 
a database during training. If some rules are not applicable for selected populations, they are 
automatically pruned out by the zero values of the probability assignment. It is easy to introduce a new 
symptom and calculations are clear and effortless. It is possible to include both statistical information and 
heuristic knowledge and combine them into the common basic probability assignment. Fuzzy evidence 
can be input during inference. A threshold of imprecision can be assumed, so less relevant symptoms can 
be considered if the most reliable observations do not allow for elaborating a diagnosis. Therefore, the 
proposed method may solve some important problems of the diagnosis support  
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