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Ewa STRASZECKA

UNCERTAINTY AND IMPRECISION IN MEDICAL DIAGNOSIS SUPPORT

The paper concerns methods of representation ofrtaicty and imprecision in successful medical supp
applications. Advantages of the methods are poiotgdand some of their drawbacks are explained. ethod of
simultaneous representation of imprecision of symms and uncertainty of diagnostic rules is propo3dew method
suggests an extension of the Dempster-Sahfer tHepfuzzy focal elements. An example of the meti®diven and
their links as well differences from previous apgrbes are discussed. Conclusions about uncergigtymprecision
representation in medical diagnosis support areiged.

1. INTRODUCTION

Medical diagnosis is a very complex task sinceeddht kinds of information must be considered
with various certainty and next combined. Answeosf an interview with a patient are often ambiguous
Results of a primary examination are usually lisgjaally formulated. Outcomes of laboratory tests a
judged in relation to their norms. Other diagnogims like images, parameters of electrical sigedt.,
also require interpretations. Moreover, sometimesrenations cannot be done, for instance because o
a patient’s state, and then the diagnosis musikentin the lack of evidence.

A result of an examination can be attached withrexipion measure that indicates its accuracy of
matching a symptom. For instance, the body temperaif 37°C matches ‘fever’ with less precisionntha
the temperature of 39°C. If there is no thermometexilable the ‘fever can be find out with low
precision by touching a forehead. These are trexalmples, but indeed all accessible evidence dhwail
used during a diagnosis. Simultaneously, the loeeigion of evidence should be taken into account.

Relations among symptoms and diseases generallglsmeuncertain. The same symptoms may
occur with different diseases and one disease naag lvarious manifestations. A headache may be
a symptom of flu or migraine, while migraine maymiast by the headache or a partial vision loss. Of
course, symptoms and diseases are related witbretiff frequency of occurrence. The frequency of
occurrence or belief that a symptom is relevara tiisease may be expressed by a certainty measure.

It might be concluded that two measures: imprenisinod uncertainty should be used in diagnostic
reasoning. Nevertheless, many researchers do ricg¢ chatinction between precision and certainty and
regard them the same concept. It happens partiguldren one of the measures is less important in
reasoning (e.g. diagnostic rules have equal saamfie) or reliable information about the measurnots
available. Still, all diagnosis support tools usens confidence measure. Depending on an approach th
measure is considered as probability, membersmptifan, belief or plausibility. Although researcker
work on diagnosis support for many years, they qaistly solve the problem of a measure choiceithat
appropriate for a problem. The present work showsesapproaches denoting their strong and week
points and at the end suggests an original metfiadodeling imprecision and uncertainty measures in
diagnosis support.

2. MODELING UNCERTAINTY OF A DIAGNOSIS

Let us consider uncertainty of a diagnosis as asuareaof significance of symptoms in the
diagnosis. It is often considered as a probabiigtjye or a membership function of a fuzzy set.iStias
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are often used to evaluate probability of the desgs given symptoms. Information from statistice ba
applied in the diagnosis support in two ways. Birstequencies of occurrence of symptoms integatet
by experts are directly used to evaluate signifteaof the symptoms in the diagnosis. Secondly,
necessary a priori and conditional probabilities faund by means of the frequencies and next tlyeBa
formula is used. Let us discuss the first manner.

Frequencies of occurrence are not exclusive knaydedbout relations among symptoms and
diagnoses. They are usually supplemented by exdestgistics. In this way medical indices were
formulated. They were introduced into medical gcacimuch earlier than computers entered hospitals
and they are still in use, thus they are worthyatice. Roughly speaking, the medical index iskdeta
that concerns one disease, in which each symptenamassigned score. The score is an integer\aositi
or negative value. It can be given by means okp &inction (Fig.1). The scores should be summed up
for symptoms occurring with a patient. Next the sarmterpreted by means of limits that are essdleld
for the table and imply conclusions. These limits determined according to statistics. The conghssi
are usually of the form: ‘suspected disease’, Hertinvestigation are necessary’ and ‘probablyiitiot
Examples of such indices are Crooks Index [12] Bhdray Index [19] for thyroid glad diseases or
INFARCTEST [36] for a heart infarct risk estimatiofhe indices are simple and useful tool for quick
evaluation of many symptoms at a primary
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Fig. 1. Original score step function for the syistblood pressure in INFARCTEST.

stage of a diagnosis. Unfortunately, computeriratibindices is worthless for diagnosis supportaose
it is very difficult to add a new symptom to an &Kig set of findings or to change an evaluation
of a medical procedure. In both cases the changieofalgebraic sum is difficult to assess. Hence,
updating each time requires a new statistical imyagon. Obviously, complexity of the investigatio
increases along with the final number of symptoifitsus, it may happen that the performance of an
enlarged index in worse than that of the previoassion [31]. Therefore, medical indices are not
a suitable tool for computer diagnosis support.yTten be suitable for formulating fuzzy rules, thbu
we cannot expect that in each case a fuzzy conciwgill be exactly the same as the conclusion iaeid
by the original score [31].

The second way to use statistical information cxiesh a determination of conditional and a priori
probabilities which are next used in Bayes' formihathe diagnosis support the formula is usedchi t
following form [15, 16]:

P(S/D)P(D)

P(D/S) = P(S/D)P(D) + P(S/ND)P(ND) '

(1)

whereND stands for lack of the disease, heR¢B)+P(ND)=1. Bayesian approach is important in early
medical diagnosis support [22], but it is not frflem substantial drawbacks. Some of necessary
probability values are available, but the otherdifiécult to obtain. Calculation of thB(D/S) requires the
P(D) value which is usually available because freqigsneof occurrence of diseases in the population are
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often known. The F¥D) is determined on the basis of examinations donéaspitals or outpatient
clinics. The matter is much more complicated witle P(SND). In practice it is not found for a
population of healthy people, but for a ‘controbgp’ in which there are patients who do not sufifem

the D disease, but generally are not healthy. This nesylt in a false evaluation of the probability.
Moreover, theS symbol in (1) stands both for set of symptoms aingle symptom (one-element set).
Thus, to be exact, the D) and theP(SND) should be determined individually for each poksib
combination of symptoms. It is practically impodsiiConditions of a statistic research are vengtsand
often impossible to sustain. Because of all theseviblacks the diagnosis support based on the Bayes
formula (1) is either simplified to trivial cases wsed in rather a flexible manner, ignoring matatcal
constraints. For instance in lliad expert systentenative Bayes’ formula is proposed [15]:

_ P(S,/D)P(D)
P(D/S+0) = 5(q D)P(D) + (S ND)P(ND)
P(D) = P(D/Si1). @
P(ND) =1-P(D),
i=1...,n.

The lliad authors assume that a posteriori proliglmf the disease calculated for one symptom besom
a priori probability of the disease when the ngxhgtom is considered. This formula solves the mobl
of calculation complexity, but do not works satcdtay for many symptoms because the change of the
final P(D) value decreases along with the number of symp{8&is A human diagnostician do not make
distinction between e.g?(D)=0.9901 andP(D)=0.9999 and may disregard subsequent symptoms. Ir
order to prevent it, lliad presents differentiahginosis that makes it possible to sort possibl®tmgses
according to their probability. This opportunity keown already from earlier medical expert systems,
like for instance INTERNIST [2], [16] and is convent if the list of hypotheses is relatively short.
A comparison between lliad and INTERNIST is justifj as both are expert systems in the domain of
internal diseases. It is also interesting that IRNEST employs positive and negative score of
hypotheses.

Another well-known expert system in which probdbpilneasures are used is MYCIN [30]. Perhaps
it is the most successful medical expert systems its uncertainty representation deserves dismussi
MYCIN's certainty factorCF) is defined in as [5]:

1 P(h) =1,
MB(he) P(he)>P(h),
CF(he) = 0 P(lye) = P(h), ©)
~MD(he) P(he)<P(h),
-1 P(h) =0,

whereh denotes a hypothesis aad-evidenceMB is called the measure of belief abidD — the measure
of disbelief. The latter are calculated in thedwaling way [5]:

P(he) - P(h)
MB(he) = 1- P(h) P(hye) > P(h),
0 otherwise "
P(h) - P(he)
MD(he)={  P(h) P(lYe) < P(h),
0 otherwise
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The certainty factor equal€F = MB —MD and sinceviB, MD [ [0,1] thenCF O [-1,1]. Thus, in terms

of the certainty factor a situation in which evidendoes not carry information can be represented by
CF = 0. This is an important indication that the mbitity in its classical form may be insufficierd t
represent a diagnostic conclusion. A success of MIYI€ sometimes explained by its narrow and well-
defined domain of expertise [7]. MYCIN’s rules arensidered in contexts [30], which means that
a relatively small number of highly adequate riudes fired at each stage of inference. This ensines
great robustness and makes easier updating cgrttntors. However, theCF is not free from
deficiencies.

Figures 2— 4 concerns two hypothesds; and h, when evidencee is given and for the both
hypothesefP(h/e)>P(h) as well as probability values are different fo@mand 1. In such conditions
CF(hi, e=MB(h;, €), according to (3), (4). In Fig.2 six cases ofr@fp and conditional probability values
are presented as well BB values calculated for the cases. A priori probadsl are equalP(h;)=P(h,)
and for conditional probabilitieB(hi/e)<P(h,/€). Values of measurddB;=MB(h;, €) andMB,=MB(h,, €)
preserve the conditional inequality, iMB(hs, €) <MB(h,, € which agrees with common sense. The
cases in Fig.3 for whiclk(h;)>P(hy) and P(h,/e)>P(h./e) with resultingMB(h,, €) > MB(h,, €) are also
judged intuitively right. However, in Fig.4 we olbge that P(hi/e)=P(hye), P(h;)>P(h;) and
MB(hy, €) < MB(hy, €), which is counterintuitive.
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Fig. 3. Values of the belief measure for two hygsts with the sanf(hi/e)-P(h;) difference.
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Fig. 4. Values of the belief measure for two hygsts withP(h,/e)=P(h,/e) andP(h,)>P(h,).

This phenomenon was noticed and criticized by s¢vesearchers [16] because a priori probability
values for all hypotheses should be equal to keegistence o€CF. Another disadvantage of this factor
is a complicated and inconsistent calculatiorC&ffor chain of rules [5]. However, it cannot be dshi
that the introduction of th€F started new trends in diagnosis support. It has laecepted that a priori
probabilities which are necessary for calculatioas be subjective probabilities [10] given by exper
[16]. Yet, experts determine values of subjectiv@bpbilities in different ways [8]. Thus, inquiriebout
these probabilities must be repeated for each Gain.

There is a number of methods of diagnosis suppsed on Bayes’ formula in which calculations
are performed in a network [25, 26]. Their aimasnhake easier and clearer calculations, partigularl
updating probability values. Still, disadvantagésaoquiring knowledge remain. Hence, there are good
reasons to look for different methods of diagnasigport, particularly as it is confirmed that humaise
uncertain concepts in a diagnostic inference, hay tdo not follow exactly the classical probability
principles [22].

A probability theory that avoids the condition wiics the most unfortunate for the diagnostic
inference is the Dempster-Shafer theory of evidd®¢eln this theory focal elements are defined as
predicates with assigned basic probability vallié® dependence condition is absent in the defmiib
the assignment. Its values can be obtained froneréxpTlhis makes the theory convenient for diagnosi
support [3]. The way of its use will be shown ie flourth section.

Another approach to diagnostic inference modelirakes use of the fuzzy set theory [37]. Fuzzy
sets were recognized a good tool for human knoveledgresentation and soon after their introduction
began trials of their application in medicine. Altlyh designing membership functions for medical
parameters and modeling diagnostic inference bynse# fuzzy rules turned out to be more complex
than researchers supposed, expert systems, lilkestaince CADIAG [1, 20], were finally built. A ralin
CADIAG-2 is for instance [16]:

IF elevatedpancreationcofetalantigen(POA) in serum
THEN maybepancreaticancer (5)
with Ao =often,[ o = 0.8],Ac =strong,[c =0.7]

In (5) O denotes occurrence, C - confirmatidr; linguistic values angr — numerical values. Linguistic
descriptions: ‘elevated’, ‘often’, ‘strong’ can bepresented by membership functions. Yet, thisisutet
exactly a fuzzy rule because its premise is fuzelegated’), but its conclusion is crisp (‘pancieat
cancer’), unless the conclusion is assumed to éeidease risk with the linguistic evaluation ‘malyf
‘maybe’ is understood as certainty of the rule thes difficult to include its membership function the
fuzzy inference. In such a situation the classfoaky inference based on a fuzzy relation or a yuzz
implication is questionable. Hence, fuzzy inferemtehis system consists in operating on membership
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functions of the premises and on membershipsand (. A similar rule model appears also in other
applications [24, 35], in which classifiers ratfiean inference systems are used to support theasag

Another deviation from classical fuzzy inference @a abductive formulation of rules: ‘IF
symptom(s) THEN diagnosis’. A diagnostic rule tmapresents causal dependence which is used in
classical probability approach is ‘IF disease TH&Mkhptom(s)'. In the CASNET expert system based on
semantic networks such rules are also used [34¢ichtly the same rule should be used in fuzzy
inference, since the scheme of reasoning is thergkred modus ponens’ (I (a = b)) = b'. However,
heuristics are usually formulated in an oppositemea and so are the fuzzy rules. The violatiorogfds
influences inference effects.

Results of the first stage of fuzzy inference ammbership functions of conclusions which next
need to be aggregated. A choice of an aggregaperator is both crucial and difficult. The aggrégat
operator cannot be maximum since then conclusiorthef greatest membership becomes the final
conclusion. This is false as such a conclusionlte$tom few considered symptoms. The choice of the
right aggregation operator is application-orientétlese problems, briefly mentioned here, are wider
explained in [32]. Hence, it seems that the fuzztyteeory is convenient for representing knowleoige
diagnosis support but is not ready for straightemdwse in the diagnostic inference.

3. IMPRECISION OF SYMPTOMS

Probability-based methods of inference generallyoig the problem of unknown symptoms or
manifestations that partly match disease symptdtosvever, these problems are common in medical
practice and without their solution diagnosis suppmol will always be awkward. The fuzzy set the
much more convenient because matching a symptonedddnce can be evaluated in the [0,1] interval.
It is also possible to express values of linguistciables by means of membership functions. Téis i
particularly important for symptoms which are difflt to estimate, for instance pain, that is evi@ddy
means of the visual analog scale (VAS) [13]. Nehaddss, the majority of symptoms is linguistically
formulated. Even laboratory test results are imeggal by in linguistic categories [14]. Linguistic
expressions can be represented by membership dusctiThe membership function becopmes the
characteristic function if the symptom is repreednin two-valued logic (e.g. ‘struma’). Membership
functions may be determined for a numerical sdaleofatory test result), for a generally assumeidesc
(‘great pain’), as well as for an occasionally admscale (‘normal appetite’).

A shape of the membership function is not cruceldaring inference numerical rather than
symbolic calculations are done. A minor change ienmbership function does not change its
interpretation [6]. Still, results of applicationgy strongly depend on several important pointgyT¢an
be determined by means of descriptive statisticslath [28], neural networks [29] or/and experts’
opinions [21]. Triangular functions can result frémzy identification [33] similar to proceduresegisfor
control [31]. An extended discussion on members$hnztion shapes is provided in [27]. Let us assume
trapezoidal shape of the membership function.dtstila is [4]:

0, X< X, ,
X=X,
Xy XS Xg
X5 =X,
ux)=1 1 X; <X X, (6)
X5 — X
X, XS Xs
X5 =X,
0, X> X
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Fig. 5. Crucial points for membership functions.

This formula shows that crucial points are valuethe domain in which the function changes its ealu
from zero &, X5 and from one X, x,) (see Fig.5). If the function represents ‘normadlues of a
laboratory test therx§, x5 are usually norms of the test. Still, in [32] i in which the membership
function has 0.5 values, i.e< §, X' are suggested for the norm limits. The latteemeice points are in
better agreement with intersection points of praigldistributions for low, normal and high ressilof a
laboratory test [32]. In medical applications theormal’ function is often the basic function for a
parameter and the other two, i.e. ‘low’ and *highan be constructed as its complements. Neverthéless
membership functions represent experts’ knowledlge,functions that represent abnormal values of a
parameter may be individually created as an aveogpg@on of several experts. It is doubtful if step
functions included in medical indices are a goosidto define the functions since it is not knodan
upper or lower approximation of the steps shouldragle. In this case training data are helpful and a
kind of identification should be performed [31].

Evidence is matching a symptom to the extent thaminimum between the membership function
of the symptom and the function of evidence, whechisually a singleton. Yet, evidence represented b
the proper membership function will certainly beusfe, as it is pointed out in [18] and fuzzy input
information is already proposed in [11] and [23pwever, a method of creating membership functions
for any linguistic value entered by a computer usieould be elaborated to use fuzzy sets both as
symptoms and evidence.

4. THE DEMPSTER-SHAFER THEORY WITH FUZZY FOCAL ELEMENS

Many researchers agree that joining probabilityedaand fuzzy approaches can solve complex
problems [8]. It possible to combine the Dempsteaf8r theory (DST), which represents uncertainty of
the rule ‘IF symptom(s) THEN disease’, with theAyzet theory that describe imprecision of symptoms
In the DST focal elements are defined for whichlihsic probability assignment (BPA) is determined a
[17]:

m(f)=0, >Xm(a)=1 (7)

alls

wherem is the BPAf stands for the false predicate & a set of focal elemenés Focal elements are
predicates, so they can describe symptoms. Thédtamaent may concern one or several symptoms, i.e.

a =5 or g ={s}i=1...n, (8)

wherel is the rule and is its condition index. The BPA is determined éochosen diagnosis and can
represent correlations, frequency of occurrencegrerts’ evaluations. When a patient is consulted,
several up to all focal elements are confirmed isyhler manifestations. The manifestations are emee

in the diagnostic inference. The belief and plailisftomeasures are calculated for the evidencehm t
following way [17]:
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Beld)= > m(a) 9)
(a=d)=t

Pld)= Y m(a) (10)
(a=d)zf

whered stands for the disease andor truth. The right arron= in (9) and (10) does not denote an
implication, but an assignment. Thus, the set odf@lements and the BPA are knowledge Batland

Pl results of a consultation. If all focal elements single-symptom then alwagel(d)=PI(d), otherwise
Bel(d)<PI(d). If manifestations do not confirm symptoms at #hlenBel(d)=PI(d)=0. The truth of the
assignmenta = d can be interpreted by means of a precision meashbreh has values in the [0,1]
interval. This measure can be the membership afeene in fuzzy sets representing symptoms. Hence,
membership functions are constructed for each fetainent and each symptom in the element is
confirmed by evidence at the level [32]:

;= sup 4 (X) O * (x)], (11)
xOX

where (x) is the membership function of theh symptom in the focal element anpgt(x) is the
membership function of the appropriate piece otlence. The latter can be the characteristic functio
the singleton or the proper membership functione Tmatching level for the whole focal element is
calculated in different ways for the belief or pdility measures because of various formulatiohs o
summation conditions in (9) and (10). When thedieheasure is considered then the level is [32]:

/7(') = min 7, (12)

1<i<nj
while for the plausibility measure [32]:

61) = max i, (13)

I<i<nj

wheren, stands for the number of symptoms in thdocal element. The/” indicate to which extent
evidence confirms the focal element aftithe amount of available information about the fatement.

Such matching is done for all focal elements aminehts for whichy” is greater than an assumed
threshold are selected. The threshold can be dedlusing the value of the plausibility measurd,[Bat

in simple cases it can be deduced on the basisofbarship functions. It should correspond theissro
points. After the selection, the BPA values for thesen focal elements are summed up. This pragess
done for several diagnoses — at least for two:Ithgaand ‘ill'. Belief values for the diagnosesear
compared and the greatest value, if it is uniqodjcate the winning diagnosis. If the greatest @alu
occurs for more than one diagnosis, there is nml \@nclusion. Let us present an example that shows
similarities and differences of the presented metlocother probability-based approaches.

4.1. EXAMPLE

Let us consider three diagnoses (e.g. disedseb and health) for which rules of two-condition
premises are formulated. The conditions refer bmguistic valuesA, B and C (for instance: ‘low’,
‘medium’ and ‘high’) of two symptoms (e.g. laboratdests)X andY. The rules are listed in Tab.1. The
first column of the table should be read as follolksX is A andY is A THEN diagnosis isl;. The other
columns make analogical rules, except for columitls ' instead of the diagnosis — these rulesraste
formulated. Thus, the knowledge base is not coraplathich often happens in medical diagnosis.
Moreover, various diagnoses have different numberutes. Membership functions for th¢ and Y
symptoms are presented in Fig.6.

18



INVITED PAPER

Table 1. Rules for three diagnoses and two symptoms.

Rule Ry 1(1) Ry 1(2) _ Ryq 1(3) Rh(l) Rh(z) _ Ry 2(1) Ry 2(2)
X A A A B B B C C C
Y A B C A B C A B C
Diagnosis d; d; - d o (o - o7 dx
Ha He

——————
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Fig. 6. Membership functions for linguistic valugfsrule premises.
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Fig. 8. Belief and plausibility values fok{y} changed with 0.05 step in the [0, 5] interval.
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The BPA values for the rules are assumed equatdoh rule in the diagnosis, sty (Ru")=1/3,
i=1,2,3,m(R")=1/2,i=1,2, mu(Ry")=1/2,i=1,2. Thus, an increase of the belief and platsibialues
is not equal for each diagnosis if evidence cordiita premise. Yet, not thgel andPI values themselves
make diagnosis, but their comparison for differdiagnoses.

Now, let us test the knowledge base, i.e. rulesthant BPAs, for various values &f andY simulating
patient’s observations. The values make couptesid J[0,5]%[0,5], i, k=1,...,101. Although th&el and

Pl values are not easy to interpret (see Fig.7) lteestiBel comparison make consistent diagnoses if the
right threshold is chosen (Fig.8). The thresholtueadepends on membership functions and in this
example the most appropriate valueTe0.5. If the threshold in too low (e.d=0.2 for the leftmost
diagram in Fig.8) then diagnoses may faulty ovedagh other or areas without the final diagnosaioc
due to diagnoses conflict. If the threshold coroegls cross-points of membership functions then the
diagnoses are the most appropridteQ(5 for the diagram in the center)Tlis too high then areas of lack
of diagnosis are largd#£0.8 in the rightmost diagram).

Thus, in this method, like in indices or probapHitased approaches, the values of the BPA are
summed up, but the introduction of the imprecisieasure makes it possible to decide when a symptom
influences the diagnosis. The threshold can be gdthrduring diagnostic process and in this way
unknown or not clear symptoms can be included & diagnosis in a lack of better evidence. The
comparison of the belief values correspond withdtlypses ordering in well-known expert systems.
Calculations for databases confirmed good robustoethe method [32].

4.2.DISCUSSION

The proposed extension of the Dempster-Shafer yhawd its use for medical diagnosis support
combines probability and fuzzy approaches and mikssssible to represent knowledge and to perform
inference in a manner that agrees with human intuitVeights of diagnostic rules are representethby
BPA values, while fuzzy sets describe linguistidues of symptoms. The method follows suitable
patterns of previous approaches to the diagnogipasti The sum of the BPA values is calculated to
obtain belief values, which is similar to solutionsed in described probability-based support tools.
Premises are formulated correspondingly to fuzzgstuSimultaneously, the proposed method introduces
improvements. The belief and plausibility measuegsresent uncertainty whereas levels of matching
symptoms and observations evaluates imprecisidimeofliagnosis. Hence, both certainty and precisfon
the diagnosis is considered at the same time. Plpertunity to use imprecision measure to represent
symptoms is very convenient if linguistic variables visual analog scale have to be used. Thus,
advantages of the fuzzy approach are preserveddeawlbacks of fuzzy conclusion aggregation are
avoided. Calculations are simple and a human umsert forced to interpret directly the belief or
plausibility values. The method is easy to expl@na medical user, which is very important, since
physicians are very cautious about diagnoses aatdiom ‘black-boxes’. It makes opportunity to use
any kind of evidence if more reliable examinatiocasnot be performed, but maintains information @abou
the low precision of inference. Furthermore, amdkof evidence, crisp or fuzzy can be used.

By means of the proposed method it is also possibleombine basic probability assignments
determined for various populations or by expertse Thethod is extensively presented and results of
numerous tests are provided in [32].

5. CONCLUSIONS

This study presents several approaches to detergnmeasures of uncertainty or imprecision that
have been practically implemented and proved usefptactice. Achievements of these solutions sthoul
be appreciated, but disadvantages should be kepind in case of new implementations. It is wouh t
search for new methods of uncertainty and imprecisepresentations using experience of the previous
diagnosis support tools.

Medical knowledge is changing rapidly so a diageasipport system should be easy to update and
cannot use built-in values of certainty factors ehmse a small change in laboratory procedure or
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a different interpretation of examination resultsstnbe possible to include immediately in suchsdiesy.
The system should be also user-friendly and workorting to intuitively clear and understandable
principles.

The diagnosis support system should be designedafaery well-determined domain with
consistent knowledge. A rule-based system seerbg the most convenient framework. However, it is
probably impossible to cover a wide scope of mégioablems, for instance the whole knowledge about
internal diseases, by one set of rules and use oefjainty factors to select rules suitable for
a consultation. The rules have to be organizedomessubsets which frequently are called contexts.
Human experts often subconsciously use the comteah they see a patient - sex, appearance, haloits a
environment influence the diagnosis. These sulaetsiot disjunctive and symptoms included in rules
are not independent, so the classical probabikigras will be always violated in attempts of comafial
probability use in diagnosis support. Simply, tleeessary conditional probabilities cannot be obkthin
the lack of training data. On the other hand, stthje probabilities can be used in theories avgdin
classical probability limitations, like the Dempsghafer theory of evidence. Thus, such theoriesiish
be explored for new implementations.

It is inevitable to use both uncertainty and imien measures in medical inference. Imprecision
is typical for representation of human knowledgeachhs always a part of medical knowledge bases. It
can be modeled by fuzzy sets, still designing eirtmembership functions is not a trivial task. Buz
sets may need corrections if they are used to at@ahesults of slightly different medical proceduos
they are used in diagnosis support for various [ajoms. Modifications are also advantageous f@ida
probability assignments. Hence, uncertainty meastimat are assigned to the rules and imprecision
measures corresponding rule premises should belatdd for a database. Therefore, it is benefidal
implement diagnosis support systems in a hospitfdrmation system and update the measures by
population characteristics. The proposed methodiagnosis support that uses the extended Dempster
Shafer theory creates such an opportunity. Rules m formulated and afterwards provided with
appropriate values of the basic probability assigmmand membership functions can be found for
a database during training. If some rules are nmplieable for selected populations, they are
automatically pruned out by the zero values ofphabability assignment. It is easy to introduceeavn
symptom and calculations are clear and effortliéss.possible to include both statistical inforioatand
heuristic knowledge and combine them into the cominasic probability assignment. Fuzzy evidence
can be input during inference. A threshold of ings®n can be assumed, so less relevant symptoms ca
be considered if the most reliable observationsaballow for elaborating a diagnosis. Therefohe t
proposed method may solve some important probldrtieealiagnosis support
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