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A COMPUTER AIDED DIGNOSTIC SYSTEM FOR SURVIVAL ANALYSIS
AFTER EVAR TREATMENT OF EVAR

Abdominal Aortic Aneurysm (AAA) is a local dilationf the Aorta that occurs between the renal arat ili
arteries. Recently developed treatment involvesitisertion of a endovascular prosthetic (EVAR), athihas the
advantage of being a minimally invasive procedun¢ &lso requires monitoring to analyze postopeeapatient
outcomes. The most widespread method for monitoisngomputerized axial tomography (CAT) imaging,icth
allows 3D reconstructions and segmentations ofaitiea’s lumen of the patient under study. Previpymiblished
methods measure the deformation of the aorta betwswe studies of the same patient using image tragjisn
techniques. This paper applies neural network datisscal classifiers to build a predictor of gati survival. The
features used for classification are the volumesteggion quality measures after each of the im@ggstration steps.
This system provides the medical team an additideaision support tool.

1. INTRODUCTION

Cardiovascular diseases, that involve heart anddbleessels, are the main causes of death in the
western countries. Among these diseases, we havé&ldominal Aortic Aneurysms (AAA) that is a
focal dilation of the aorta in the abdominal regidihe use of the endovascular prostheses for asmury
repair (EVAR) has proven to be an effective techaiqo reduce the pressure and rupture risk of
aneurysms, offering shorter post-operation recotvkay open surgical repair. The EVAR isolates the
thrombosed vessel walls from the high pressure flowhe Aorta’s lumen. When patient treatment has
positive evolution, the thrombus sac between th&R\and the vessel wall is reabsorved after a time.
EVAR evolution monitoring main instrument are Cortggized Tomography (CT) images of the
abdominal region after injection of an intravengostrast agent. The main concern is that there lmeay
leaks into or from the thrombus sac due to incérpasitioning, displacement or torsion of the EVAR
graft, that is, liquid blood may appear inside theombus. This effect is called an endoleak andimuc
current research efforts are devoted to deteat itfage analysis procedures [8]. Fig. 1la is a plpstice
of the CT volume, while Fig. 1b shows a sagittaéwiof the volume with the segmented aorta, steait gr
and thrombus. Such images of the patient's abddmiea are available in the clinical routine agtod
2D images whose visual analysis is time-consuming.

Most previous image processing methods relatedhéoElVAR monitoring dealt with lumen and
thrombus segmentation problems [11,13,18] and fddressed the lumen registration to estimate the
deformation of the stent [4,10]. The aim of our ks to make an automatic analysis of the AAA,
yielding visual and quantitative information for mtwring and tracking of patients who underwent
EVAR, allowing classifying their evolution as favaible or unfavourable. In this paper we present a
computer aided system for EVAR prognosis basedassification systems trained on the patient’'s .data
Specifically, data features consist in the measargsof the deformation of the lumen between two
different time instants [4,10] obtained as the imaggistration quality measures. Visual renderifig o
AAA and EVAR transformation data can help the pbigsi to recognize deformation patterns having a
high probability of dangerous progression of theARV/and the aneurysm. The quantitative features for
the classification systems are the values of sitylanetrics obtained after rigid, affine and defable
registration of the aortic lumen. The proposed ayshas two phases: a pipeline of image registration
processes and a classification system based ommiuge similarity metrics resulting from the image
registration steps. Such approaches have proviea éffective in classification problems [1,5,14].
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Statistical classifiers and more specifically Suppector Machines (SVM) has become a standard
tool for the development of computer aided diaghamipport systems from data [3]. The image
registration of Abdominal Aortic Aneurysms (AAA)taf treatment Endovascular Aneurysm Repair
(EVAR) has already been presented in [9].

(b)

Figure 1. (a) Axial view of thrombus and lumen i€@ orthoslice using the contrast agents, bloodiingn is highlighted for a better view.
(b) 3D view of segmented lumen+stent-graft andrttbos with a sagittal CT image faded in.

2. METHODS

First, the lumen is segmented using a 3D regiomigig algorithm. After that, the registration of
the lumen extracted from two datasets of the saaienqi obtained at different moments in time is
computed and then, we quantify the deformationthefiumen computing the similarity metrics between
the reference and the registered dataset afterdiiehent registration refinement step: rigid,iaé and
deformable. Finally we classify them as favorable umfavorable using a neural network. In the
following, we proceed to describe each componetit@kystem.
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Figure 2. Pipeline of the classification input gextion process.
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2.1.REGION GROWING BASED LUMEN SEGMENTATION

Images obtained by Computerized Tomography (CTy@rtealized as 3D volumes with appropriate
software tools. Then, a segmentation process oétuis performed. We have used a User-Guided Level
Set Segmentation (UGLSS) [16] based on the wellstkn8D active contour segmentation method called
Region Competition [17] to get the Aorta lumen oggiin the images. During the preprocessing,
probability maps are computed applying a smoothetoand upper threshold. This ensures that voxels
inside the lumen have a positive value and theidreitsegative. After resampling the volume to get
isotropic voxels of size (1,1,1), we define a ROht@ining the lumen, and place a seed in it toaine
the evolving contour. We establish the parameteas ¢ontrol the propagation velocity and curvature
velocity. An evolving contour is a closed surfd@g,u,v) parametrized by variables v and by the time
variablet. The contour evolves according to the followingtipa differential equation (PDE) driven with

aF force, normal to the contouﬂ:

d _
—C(t,u,v)=FN 1
m (t,u,v) 1)

We compute the external for€eby estimating the probability that a voxel belongshe structure
of interest and the probability that it belongshe background at each voxel in the input image:

F=a(R, —R,)+ bk (2)

whereo andp are weights that modulate the relative contributi the three components Bf andk is
the mean curvature of the contour.

2.2.REGISTRATION

A sequence of three registration steps is performmigid, affine and deformable (B-splines)
registrations. The first patient’s study is consgdkthe fixed reference image and the others gistezed
respect to it. A linear image intensity interpolat@lutual Information metric and Regular Step Geadi
Descent Optimizer are used. Rigid, affine and deé&dile registrations of the lumen provide a visual
assessment of the evolution of the stent-graftulei@ shows the progressive refinement of the nragch
between two Aorta lumen regions (red and blue)glbe image registration pipeline.

2.2.1. RIGID REGISTRATION

First the two binary images corresponding to theep& lumen are roughly aligned by using a
transform initialization and then the two images aegistered using a rigid transformation. In three
dimensions we have 6 degrees of freedom which eashelined as translation in tlg andz directions,
and rotationsa, b and g about these three axes. From these unknowns weamstruct a rigid body
transformation matrixT,;,. This transformation can be presented as a rotaéfofollowed by a
translationt that can be applied to any poxt

Trigid (X) = RX +t (3)

2.2.2. AFFINE REGISTRATION

The rigid transformation is used to initialize ayisgration with an affine transform of the lumen.
While a rigid transformation preserves the distanbetween all points in the object transformed, an
affine transformation preserves parallel lines.sThiodel has 12 degrees of freedom and allows for
scaling and shearing:
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2.2.3. DEFORMABLE REGISTRATION

Finally, the deformable registration is computedwo steps, one at coarse resolution and secondly
at fine resolution. The transform resulting frone #ifine registration is used as the bulk transfofra
B-spline deformable transform. Free Form Deformei¢FFDs) based in locally controlled functions
such as B-splines are a powerful tool for modeBiydeformable objects. We use FFDs to deform the
lumen by manipulating an underlying mesh of conpoints. The resulting deformation controls the
shape of the lumen and produces a smooth and consrtransformation. A spline based FFD is defined
on the image domain:

O=(xyz2)0<=x< X0y <V, 0<z<Z (5)

where @ denotes am, X n, X n, mesh of control points with uniform spacidg In this case, the

displacement field u defined by FFD can be expkssethe 3D tensor product of the familiar 1D cubic
B-splines:

u(x,y,.z) = E:E:c- E?n=l} E:E::c- E}[u]E[HJE}[W]@{:'+L}'+m,k+ n) (6)

where:
=[f- 1= == o=t P =3I

and®, represents the |-th basis function of the b-sgline

0,(s) = (1 — 5)%6(s) Y
8,(5) = (35" — 65" + 4)6
B;(s) = (—3s* +3s° + 35+ 1)6
8, (s) = s%

Figure 3. Visualization of fixed and moving imag#she lumen: (a) before registration, (b) aftgidj (c) affine,
and (d) deformable registration.
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2.2.4. SIMILARITY METRICS

We compute two similarity metrics: the sum of sgdamtensity differences (SSD) and mutual
information (MI) [15]. These similarity metrics hawach been used widely in the past for nonrigid
registration, to measure the intensity agreemetwdsn a deforming image and the target image. We
briefly describe both distances in this section.

SSD is suitable when the images have been acdiliredgh similar sensors and thus are expected
to present the same intensity range and distribugor voxel locations, in imageA, within an overlap

domainQj, ,, comprising\ voxels:

S =3y oy AW ~ BT (x,)f (8)

Mutual information is a measure of how much infotima one random variable has about another.
The information contributed by the images is sintply entropy of the portion of the image that cvesl
with the other image volume, and the mutual infdiforais a measure of the joint entropy respech t
marginal entropies:

I(AB)=H(A)+H(B)-H(AB) 9)

where | (A, B) is the mutual informationH (A) and H(B) are the marginal entropies of the fixed and
moving images, andH (A,B) is the joint entropy. We have computed the mearasg and mutual

information similarity metrics for the evaluatior the registration in 3 registration processes heaic
them with rigid, affine, deformable coarse and defable fine methods. A decrease of both metric is
observed in the consequent registration methods.

2.3.STATISTICAL CLASSIFICATION ALGORITHMS AND NEURAL NETWORKS

We deal with two class classification problem, giwe collection of training/testing input feature
vectors X = {x, e R*, i = 1,...,1} and the corresponding labele,, € {—1,1}, i = 1,...,1}, which
sometimes can be better denoted in aggregated dsria binary vectoy € {—1,1}. We perform the
classification in the Weka enviroment [6].

2.3.1. SUPPORT VECTOR MACHINES

The Support Vector Machine (SVM) [12] constructsyperplane or set of hyperplanes in a high- or
infinite- dimensional space, which can be used dlassification. Intuitively, a good separation is
achieved by the hyperplane that has the largesntis to the nearest training data points of aagsgl
since in general the larger the margin the lowergbneralization error of the classifier. The apploto
build a classifier system from the given data cstssin solving the following optimization problem:

mﬂéwwar CEL ¢ (10)
subject to:

Fz‘[wr‘i’[xi]_l_b] = (1_3}1‘1 =0 i=12, .,n (11)

where w is the normal vector to the hyperplang,is a constant and;, measures the degree of
misclassification of the datum . We build the SVM classifier, testing both withlinear kernel and
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Radial Basis Function (RBF) kernel. In both casedfiwthe parameter valu€ =1, and we fix the RBF
width paramtery =0.1.

2.3.2. BACKPROPAGATION

Backward propagation of errors, or backpropagaf®m), [12,7] is a non-linear generalization of
the squared error gradient descent learning rulefdating the weights of artificial neurons iniagse-
layer perceptron, to multi-layer feed-forward netk#& also called Multi-Layer Perceptron (MLP).
The backpropagation of the error allows to compbee gradient of the error function relative to the
hidden units’ weights. During on-line learning, theights of the network are updated at each inpta d
item presentation. We have used the resilient bragiggation, which uses only the derivative sign to
perform the weight updating. We restrict our préston of BP to train the weights of the MLP fotveo
class problem. Let the instantaneous etgrbe defined as:

B,(w) =2 (5, — z(x,)) (12)

where y, is the p-th desired outputy,, and z (x,) is the network output when thgth training
exemplarx, is inputted to the MLP composed Kflayers, whose weights are aggregated in the vector

w. We use neuron units with sigmoid transfer functteained to minimize the mean squared error
function using Levenberg-Marquardt optimizationttwa minimum performance gradient of 1e-10. It
consists in solving the equation:

(JTI+INd=J"E (13)

whereJ is the Jacobian matrix that contains first denxest of the network errors with respect to the
weights and biases, aiftlis the error vector containing the output erransdach input vector used on
training the network. In the computational expenms, we have found empirically thatuber of
features + number of classes)/2 hidden units are appropriate to find excellefdssification and
generalization results. The learning rate valuecesd to 0.1.

2.3.3. RANDOM FOREST

This classifier is a multi-classifier based on RamdTrees. This classifiers are a specific variation
of a decision tree [2]. When the tree is constrdieted trained, each node contains a discriminaietrier
which allows to decide how to go down or traveiise tree. The classifier is able to detect key-point
occurrences even in the presence of image noig@fivas in scale, orientation and illumination ngas.

A Random Tree is called random because insteacrddnming exhaustive search in order to find the
best combination of features to define a discriminariteria in each node, just some random
combinations of them are evaluated. When the nurobdifferent classes to be recognized and the size
of the descriptor of such classes is high, an estihaianalysis is not feasible. Additionally, theamples

to be used for the training process are selectedmatom from the available ones. The combination of
several random trees forms a multi-classifier kn@asrRandom Forest (RF). One of the advantagesof th
Random Forest is its combinational behavior. laadom tree can be weak itself, i.e. its recognitaie

is low, then the combination of such weak tree gamerate a strong classifier. We build the RF tlass
with 20 trees each of depth 5. Variations of them@meters around these values do not cause sagnifi
changes in final results.

3. RESULTS

We have tested the approach with 15 datasets pomdsig to 5 patients which have been
subjected to EVAR with stent-graft devices. Eactasket is comprised between 300 and 500 axial slices
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that form a three dimensional image. The CT datasete obtained from a LightSpeed16 CT scanner
(GE Medical Systems, Fairfield, CT, USA) with 54212x 354 voxel resolution and 0.729.725x0.8
mm. spatial resolution. The time elapsed betwe#ardint studies of the same subject varies betvéeen
and 12 months. Four datasets, corresponding topatient, are validated by the doctors as having a
favorable evolution and 11, corresponding to th@ai@ing 4 patients, as unfavorable, according to
aneurysm volume and surface measures, as welbad ldakages in the aneurysm sac.

Input feature vectors are eight-dimensional. Features correspond to the MSD metric values, the
other four to the MI metric values. Metric valugs aomputed after each registration step betweeln ea
pair segmented lumens.

We train over the set of features different classsf and we show the results for accuracy,
sensitivity, specificity, and area under the ROQJ(A. Table 1 gives average results from on a one-
leave-out cross-validation strategy on this dateb¥ge obtain the best results for linear SVM, foibal
by Random-Forest and MLP-BP, while RBF-SVM gives the less accurate results. This can be
explained by the great unbalance of the sample cdatses. Results are promising of high accuracy
prognosis, needing confirmation on a larger patemulation.

Table 1. Cross-validation results over the simyamietric features computed from the CT dataset&Y0AR evolution classification.

Classifier Accuracy Sensitivity Specificity AUC
Linear SVM 0.72 0.75 0.67 0.97
RBF SVM 0.77 0.80 0.70 0.98
BP- MLP 0.73 0.71 0.80 0.97
Random-Forest 0.91 0.99 0.73 0.99

4. CONCLUSIONS

Building Computer Aided Diagnosis systems for tmegnmosis of EVAR applied to AAA has not
previously dealt with in the literature. Therefotlee whole feature extraction and classificatiomepne
presented in this paper is the only instance ohsamproach up to now. The process pipeline is as
follows: After segmentation of the Aorta's lumerrggistration process is carried out over binargges
improving on the works that perform registratioreoypoint sets, which always involve a greater lofss
information. Registering images from different inray datasets obtained from the same patient at
different times provide us quantitative informatmimout deformation of the stent-gratft.

The feature vectors consist of the similarity measwomputed on the segmented lumen after rigid,
affine and deformable registration. The datasetthefpatients have been previously validated by the
medical team as having a favorable or unfavorabdéugion.

Considering the average accuracy data achieved ost f the classifiers tested, our main
conclusion is that the proposed feature extracisonery effective in providing a good discriminatio
between patients that can easily be exploited tiol lslassifier systems predicting the evolutionottier
patients and provide support for the physician sieni making. Further ongoing works with a more
extensive database are aimed to confirm these usinaks.
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