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A COMPUTER AIDED DIGNOSTIC SYSTEM FOR SURVIVAL ANALYSIS 
AFTER EVAR TREATMENT OF EVAR 

Abdominal Aortic Aneurysm (AAA) is a local dilation of the Aorta that occurs between the renal and iliac 
arteries. Recently developed treatment involves the insertion of a endovascular prosthetic (EVAR), which has the 
advantage of being a minimally invasive procedure but also requires monitoring to analyze postoperative patient 
outcomes. The most widespread method for monitoring is computerized axial tomography (CAT) imaging, which 
allows 3D reconstructions and segmentations of the aorta’s lumen of the patient under study. Previously published 
methods measure the deformation of the aorta between two studies of the same patient using image registration 
techniques. This paper applies neural network and statistical classifiers to build a predictor of patient survival. The 
features used for classification are the volume registration quality measures after each of the image registration steps. 
This system provides the medical team an additional decision support tool.  

1. INTRODUCTION  

Cardiovascular diseases, that involve heart and blood vessels, are the main causes of death in the 
western countries. Among these diseases, we have the Abdominal Aortic Aneurysms (AAA) that is a 
focal dilation of the aorta in the abdominal region. The use of the endovascular prostheses for aneurysm 
repair (EVAR) has proven to be an effective technique to reduce the pressure and rupture risk of 
aneurysms, offering shorter post-operation recovery than open surgical repair. The EVAR isolates the 
thrombosed vessel walls from the high pressure flow in the Aorta’s lumen. When patient treatment has 
positive evolution, the thrombus sac between the EVAR and the vessel wall is reabsorved after a time. 
EVAR evolution monitoring main instrument are Computerized Tomography (CT) images of the 
abdominal region after injection of an intravenous contrast agent. The main concern is that there may be 
leaks into or from the thrombus sac due to incorrect positioning, displacement or torsion of the EVAR 
graft, that is, liquid blood may appear inside the thrombus. This effect is called an endoleak and much 
current research efforts are devoted to detect it by image analysis procedures [8]. Fig. 1a is a typical slice 
of the CT volume, while Fig. 1b shows a sagittal view of the volume with the segmented aorta, stent graft 
and thrombus. Such images of the patient's abdominal area are available in the clinical routine as a set of 
2D images whose visual analysis is time-consuming.  

Most previous image processing methods related to the EVAR monitoring dealt with lumen and 
thrombus segmentation problems [11,13,18] and few addressed the lumen registration to estimate the 
deformation of the stent [4,10]. The aim of our work is to make an automatic analysis of the AAA, 
yielding visual and quantitative information for monitoring and tracking of patients who underwent 
EVAR, allowing classifying their evolution as favourable or unfavourable. In this paper we present a 
computer aided system for EVAR prognosis based on classification systems trained on the patient’s data. 
Specifically, data features consist in the measurements of the deformation of the lumen between two 
different time instants [4,10] obtained as the image registration quality measures. Visual rendering of 
AAA and EVAR transformation data can help the physician to recognize deformation patterns having a 
high probability of dangerous progression of the EVAR and the aneurysm. The quantitative features for 
the classification systems are the values of similarity metrics obtained after rigid, affine and deformable 
registration of the aortic lumen. The proposed system has two phases: a pipeline of image registration 
processes and a classification system based on the image similarity metrics resulting from the image 
registration steps. Such approaches have proven to be effective in classification problems [1,5,14]. 
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Statistical classifiers and more specifically Support Vector Machines (SVM) has become a standard 
tool for the development of computer aided diagnosis support systems from data [3]. The image 
registration of Abdominal Aortic Aneurysms (AAA) after treatment Endovascular Aneurysm Repair 
(EVAR) has already been presented in [9].  

 
                             (a)                               (b) 

Figure 1. (a) Axial view of thrombus and lumen in a CT orthoslice using the contrast agents, blood in lumen is highlighted for a better view.  
(b) 3D view of segmented lumen+stent-graft and thrombus with a sagittal CT image faded in. 

2. METHODS 

First, the lumen is segmented using a 3D region growing algorithm. After that, the registration of 
the lumen extracted from two datasets of the same patient obtained at different moments in time is 
computed and then, we quantify the deformations of the lumen computing the similarity metrics between 
the reference and the registered dataset after each different registration refinement step: rigid, affine and 
deformable. Finally we classify them as favorable or unfavorable using a neural network. In the 
following, we proceed to describe each component of the system. 

 

Figure 2. Pipeline of the classification input generation process. 
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2.1. REGION GROWING BASED LUMEN SEGMENTATION 

Images obtained by Computerized Tomography (CT) are visualized as 3D volumes with appropriate 
software tools. Then, a segmentation process of lumen is performed. We have used a User-Guided Level 
Set Segmentation (UGLSS) [16] based on the well-known 3D active contour segmentation method called 
Region Competition [17] to get the Aorta lumen region in the images. During the preprocessing, 
probability maps are computed applying a smooth lower and upper threshold. This ensures that voxels 
inside the lumen have a positive value and the outside negative.  After resampling the volume to get 
isotropic voxels of size (1,1,1), we define a ROI containing the lumen, and place a seed in it to initialize 
the evolving contour. We establish the parameters that control the propagation velocity and curvature 
velocity. An evolving contour is a closed surface C(t,u,v) parametrized by variables u, v and by the time 
variable t. The contour evolves according to the following partial differential equation (PDE) driven with 

a F force, normal to the contour, N
uur

: 

 ( , , )C t u v F N
t

∂ =
∂

uur
 (1) 

We compute the external force F by estimating the probability that a voxel belongs to the structure 
of interest and the probability that it belongs to the background at each voxel in the input image: 

 ( )obj bgF P P kα β= − +  (2) 

where α and β are weights that modulate the relative contribution of the three components of F, and k is 
the mean curvature of the contour. 

2.2. REGISTRATION 

A sequence of three registration steps is performed; rigid, affine and deformable (B-splines) 
registrations. The first patient’s study is considered the fixed reference image and the others are registered 
respect to it. A linear image intensity interpolator, Mutual Information metric and Regular Step Gradient 
Descent Optimizer are used. Rigid, affine and deformable registrations of the lumen provide a visual 
assessment of the evolution of the stent-graft. Figure 2 shows the progressive refinement of the matching 
between two Aorta lumen regions (red and blue) along the image registration pipeline. 

2.2.1. RIGID REGISTRATION 

First the two binary images corresponding to the patient lumen are roughly aligned by using a 
transform initialization and then the two images are registered using a rigid transformation. In three 
dimensions we have 6 degrees of freedom which can be defined as translation in the x,y and z directions, 
and rotations a, b and g about these three axes. From these unknowns we can construct a rigid body 
transformation matrix rigidT . This transformation can be presented as a rotation R followed by a 

translation t that can be applied to any point x: 

 ( )rigidT x Rx t= +  (3) 

2.2.2. AFFINE REGISTRATION 

The rigid transformation is used to initialize a registration with an affine transform of the lumen. 
While a rigid transformation preserves the distances between all points in the object transformed, an 
affine transformation preserves parallel lines. This model has 12 degrees of freedom and allows for 
scaling and shearing: 
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  (4) 

2.2.3. DEFORMABLE REGISTRATION  

Finally, the deformable registration is computed in two steps, one at coarse resolution and secondly 
at fine resolution. The transform resulting from the affine registration is used as the bulk transform of a  
B-spline deformable transform. Free Form Deformations (FFDs) based in locally controlled functions 
such as B-splines are a powerful tool for modeling 3D deformable objects. We use FFDs to deform the 
lumen by manipulating an underlying mesh of control points. The resulting deformation controls the 
shape of the lumen and produces a smooth and continuous transformation. A spline based FFD is defined 
on the image domain: 

  (5) 

where Ф denotes an  mesh of control points with uniform spacing δ. In this case, the 
displacement field u defined by FFD can be expressed as the 3D tensor product of the familiar 1D cubic 
B-splines: 

  (6)  

where: 

  

 
and  represents the l-th basis function of the b-splines: 

  (7) 

  
  
  

 
Figure 3. Visualization of fixed and moving images of the lumen: (a) before registration, (b) after rigid, (c) affine,  

and (d) deformable registration. 
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2.2.4. SIMILARITY METRICS 

We compute two similarity metrics: the sum of squared intensity differences (SSD) and mutual 
information (MI) [15]. These similarity metrics have each been used widely in the past for nonrigid 
registration, to measure the intensity agreement between a deforming image and the target image. We 
briefly describe both distances in this section. 

SSD is suitable when the images have been acquired through similar sensors and thus are expected 
to present the same intensity range and distribution. For voxel locations Ax  in image A, within an overlap 

domain ,
T
A BΩ , comprising N voxels: 

 
2

,

1
( ) ( )T

T A A
A A B

SSD A x B xxN
= −∈Ω∑  (8) 

Mutual information is a measure of how much information one random variable has about another. 
The information contributed by the images is simply the entropy of the portion of the image that overlaps 
with the other image volume, and the mutual information is a measure of the joint entropy respect to the 
marginal entropies: 

 ( , ) ( ) ( ) ( , )I A B H A H B H A B= + −  (9) 

where ( , )I A B  is the mutual information, ( )H A  and ( )H B  are the marginal entropies of the fixed and 
moving images, and ( , )H A B  is the joint entropy. We have computed the mean squares and mutual 
information similarity metrics for the evaluation of the registration in 3 registration processes, each of 
them with rigid, affine, deformable coarse and deformable fine methods. A decrease of both metric is 
observed in the consequent registration methods. 

2.3. STATISTICAL CLASSIFICATION ALGORITHMS AND NEURAL NETWORKS 

We deal with two class classification problem, given a collection of training/testing input feature 
vectors  and the corresponding labels , which 
sometimes can be better denoted in aggregated form as a binary vector . We perform the 
classification in the Weka enviroment [6]. 

2.3.1.   SUPPORT VECTOR MACHINES  

The Support Vector Machine (SVM) [12] constructs a hyperplane or set of hyperplanes in a high- or 
infinite- dimensional space, which can be used for classification. Intuitively, a good separation is 
achieved by the hyperplane that has the largest distance to the nearest training data points of any class, 
since in general the larger the margin the lower the generalization error of the classifier. The approach to 
build a classifier system from the given data consists in solving the following optimization problem: 

   (10) 

subject to: 

   (11) 

where w is the normal vector to the hyperplane, C is a constant and ξi, measures the degree of 
misclassification of the datum ix . We build the SVM classifier, testing both with a linear kernel and 
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Radial Basis Function (RBF) kernel. In both cases we fix the parameter value 1C = , and we fix the RBF 
width paramter 0.1.γ =  

2.3.2. BACKPROPAGATION 

Backward propagation of errors, or backpropagation (BP), [12,7] is a non-linear generalization of 
the squared error gradient descent learning rule for updating the weights of artificial neurons in a single-
layer perceptron, to multi-layer feed-forward networks, also called Multi-Layer Perceptron (MLP).  
The backpropagation of the error allows to compute the gradient of the error function relative to the 
hidden units’ weights. During on-line learning, the weights of the network are updated at each input data 
item presentation. We have used the resilient backpropagation, which uses only the derivative sign to 
perform the weight updating. We restrict our presentation of BP to train the weights of the MLP for a two 
class problem. Let the instantaneous error pE  be defined as: 

  (12) 

where py  is the p-th desired output py , and ( )K pz x  is the network output when the p-th training 

exemplar px  is inputted to the MLP composed of K layers, whose weights are aggregated in the vector 

w . We use neuron units with sigmoid transfer function trained to minimize the mean squared error 
function using Levenberg-Marquardt optimization, with a minimum performance gradient of 1e-10. It 
consists in solving the equation: 

 ( l )T TJ J I d J E+ =  (13) 

where J is the Jacobian matrix that contains first derivatives of the network errors with respect to the 
weights and biases, and E is the error vector containing the output errors for each input vector used on 
training the network.  In the computational experiments, we have found empirically that (number of 
features + number of classes)/2 hidden units are appropriate to find excellent classification and 
generalization results. The learning rate value is fixed to 0.1. 

2.3.3. RANDOM FOREST 

This classifier is a multi-classifier based on Random Trees. This classifiers are a specific variation 
of a decision tree [2]. When the tree is constructed and trained, each node contains a discriminant criteria 
which allows to decide how to go down or traverse the tree. The classifier is able to detect key-point 
occurrences even in the presence of image noise, variations in scale, orientation and illumination changes. 
A Random Tree is called random because instead of performing exhaustive search in order to find the 
best combination of features to define a discriminant criteria in each node, just some random 
combinations of them are evaluated. When the number of different classes to be recognized and the size 
of the descriptor of such classes is high, an exhaustive analysis is not feasible. Additionally, the examples 
to be used for the training process are selected at random from the available ones. The combination of 
several random trees forms a multi-classifier known as Random Forest (RF). One of the advantages of the 
Random Forest is its combinational behavior. If a random tree can be weak itself, i.e. its recognition rate 
is low, then the combination of such weak tree can generate a strong classifier. We build the RF classifier 
with 20 trees each of depth 5. Variations of these parameters around these values do not cause significant 
changes in final results.  

3. RESULTS 

We have tested the approach with 15 datasets corresponding to 5 patients which have been 
subjected to EVAR with stent-graft devices. Each dataset is comprised between 300 and 500 axial slices 
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that form a three dimensional image. The CT datasets were obtained from a LightSpeed16 CT scanner 
(GE Medical Systems, Fairfield, CT, USA) with 512× 512× 354 voxel resolution and 0.725× 0.725× 0.8 
mm. spatial resolution. The time elapsed between different studies of the same subject varies between 6 
and 12 months. Four datasets, corresponding to one patient, are validated by the doctors as having a 
favorable evolution and 11, corresponding to the remaining 4 patients, as unfavorable, according to 
aneurysm volume and surface measures, as well as blood leakages in the aneurysm sac. 

Input feature vectors are eight-dimensional. Four features correspond to the MSD metric values, the 
other four to the MI metric values. Metric values are computed after each registration step between each 
pair segmented lumens. 

We train over the set of features different classifiers and we show the results for accuracy, 
sensitivity, specificity, and area under the ROC (AUC). Table 1 gives average results from on a one-
leave-out cross-validation strategy on this database. We obtain the best results for linear SVM, followed 
by Random-Forest and MLP-BP, while RBF-SVM gives us the less accurate results. This can be 
explained by the great unbalance of the sample data classes. Results are promising of high accuracy 
prognosis, needing confirmation on a larger patient population. 

Table 1. Cross-validation results over the similarity metric features computed from the CT datasets for EVAR evolution classification. 

Classifier  Accuracy Sensitivity Specificity AUC 

 Linear SVM  0.72 0.75 0.67 0.97 

 RBF SVM  0.77 0.80 0.70 0.98 

 BP- MLP 0.73 0.71 0.80 0.97 

 Random-Forest  0.91 0.99 0.73 0.99 

4. CONCLUSIONS 

Building Computer Aided Diagnosis systems for the prognosis of EVAR applied to AAA has not 
previously dealt with in the literature. Therefore, the whole feature extraction and classification pipeline 
presented in this paper is the only instance of such approach up to now. The process pipeline is as 
follows: After segmentation of the Aorta's lumen, a registration process is carried out over binary images 
improving on the works that perform registration over point sets, which always involve a greater loss of 
information. Registering images from different imaging datasets obtained from the same patient at 
different times provide us quantitative information about deformation of the stent-graft. 

The feature vectors consist of the similarity measures computed on the segmented lumen after rigid, 
affine and deformable registration. The datasets of the patients have been previously validated by the 
medical team as having a favorable or unfavorable evolution. 

Considering the average accuracy data achieved by most of the classifiers tested, our main 
conclusion is that the proposed feature extraction is very effective in providing a good discrimination 
between patients that can easily be exploited to build classifier systems predicting the evolution of other 
patients and provide support for the physician decision making. Further ongoing works with a more 
extensive database are aimed to confirm these conclusions. 
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