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APPLICATION OF PATTERN RECOGNITION TECHNIQUES FOR THE 
ANALYSIS OF THIN BLOOD SMEAR IMAGES 

In this paper we discuss applications of pattern recognition and image processing to automatic processing and 
analysis of histopathological images. We focus on counting of Red and White blood cells using microscopic images of 
blood smear samples. We provide literature survey and point out new challenges. We present an improved cell counting 
algorithm.  

1. MANUAL ANALYSIS OF BLOOD SMEAR IMAGES 

Analysis of microscopic medical images is an important interdisciplinary problem involving both 
physicians and computer scientists. One of the important and active areas of research is the problem of 
counting blood cells (CBC) [12] which is used as screening test to check such disorders as infections, 
allergies, problems with clotting, and it helps diagnosing and managing a large number of diseases.  
In practice a panel of tests is carried out that examine different blood components such as counting white 
blood cells (WBC) [12-Ch.159, 1], white blood cells differential, counting red blood cells (RBC)  
[12-Ch.159], checking for signs of disease and the counting the number of infected cells. In normal 
human blood, there are 4,000,000-6,000,000, 4,000-11,000, 150,000-450,000 per microliter of RBC, 
WBC, and normal platelet counts, respectively, with platelets usually present in complexes rather than 
singularly [12]. But instead of the special case of spontaneous bleeding, platelet counts are rarely 
requested in a CBC, so in this work we will focus on RBC and WBC counts. 

A manual diagnosis would search for abnormalities in the blood cells and particles while 
performing a CBC. Complications may arise from the large number of hematic pathologies [31] including 
the large number of WBC sub-types [22], which makes the analysis prone to human error. This process 
can be automated by computerized techniques which are more reliable and economical. Therefore there is 
always a need for the development of systems to provide assistance to hematologists and to relieve the 
physician of drudgery or repetitive work.  

Our goal is to develop and validate an image processing and pattern recognition system to quantify 
and detect microscopic particles on thin blood smear slides to enhance automated system to characterize 
blood health status of patient. In essence we seek to determine a fast, accurate mechanism for 
segmentation and gather information about distribution of microscopic particles which may help to 
diagnose the degree of any abnormalities during clinical analysis. Automatic detection of pathologies 
from histopathological images is currently very active and important area of research.  

2. AUTOMATIC PROCESSING OF BLOOD SMEAR IMAGES  

During blood film examination, the individual types of blood smear particles (leukocytes and 
erythrocytes) are enumerated and then blood slides are usually made to investigate hematological 
problems [12]. The history of research into automated blood slide examination dates back to 1975, see 
Bentley & Lewis [3].  

There is a vast amount of literature dedicated to differential blood counts. To aid in the 
segmentation of digital images, thresholding has been used as a pre-processing step [11]. But if the cells 
are relatively faint compared to the background, as is common with RBC in blood smear digital images, 
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this can lead to further problems which in turn require additional processing. Di Ruberto et al. [7] follow 
up the thresholding step by segmenting using classical morphological operators and the watershed 
algorithm [10] to demarcate cell boundaries.  

Other common automatic approaches for boundary detection are active contours or snakes [17,25]. 
In addition to being dependent on the accurate placement of the initial contour, the boundaries of the cells 
detected may not follow the actual contours of the blood cells [26]. In related work [27] active contours 
were also used to track the boundaries of WBC but occluded cells were not accurately handled. Kumar et 
al. [18] introduced a new cell edge detector while trying to determine accurate nucleus edges. A two-step 
segmentation framework was proposed by Sinha and Ramakrishnan [35] using k-means clustering of the 
data mapped to HSV color space followed by using shape, color, and texture features in a neural network 
classifier. A watershed segmentation algorithm was used in [16] for WBC determination.  

WBC classification in the recent work by Hamghalam et al. [14] utilizes Otsu’s thresholding 
method to segment nuclei. The results are independent of the intensity differences in Giemsa-stained 
images of peripheral blood smear and active contours are used to extract precise boundary of cytoplasm.  

As mentioned previously, the nature of automatic processing of microscopic images in medicine is 
a complicated task. This is because some of the basic tasks to be performed such as pre-processing, 
segmentation, classification, object recognition and inference require extensive understanding of the 
specific problem. This requires comprehensive knowledge in many disciplines such as medicine, 
computer science, image and signal processing.  

3. METHODOLOGY AND ALGORITHMS 

3.1. IMAGE GRAY SCALE CONVERSION 

The normal blood images used in this research were saved in JPEG format of size 512×512 pixels. 
The first step in processing is to choose a proper gray scale channel. Some previous published work used 
the green channel of the RGB color encoding to analyze blood image data [8] or perform segmentation 
blood smear particles by choosing an appropriate threshold of this channel [21]. Also with the presence of 
white blood cells, granular cytoplasm pixels can be more easily separated from others in the image 
histogram of the G (green) channel (see Fig. 1 and [39]). We show that the best choice for converting the 
blood smear images to gray scale is to use the G channel rather than the other channels of the RGB 
encoding, or even the Y channel of YIQ encoding. The reason is that green channel is better at 
maintaining high frequency feature information and contrasts in gray scale intensity are more easily 
distinguished in the G channel.  

 

Fig. 1. (Left to right): Blue, Red, and Green channels (original, with no noise added; sample from Table 5). 

Experiments on a set of 10 sample blood smear images show that the G channel has a wider range 
of gray-level values in the intensity histogram than the R and B channels and thus keeps more feature 
details (see Fig. 2). The G channel generally has the highest contrast between structures even in the 
presence of different backgrounds (e.g., different staining and/or different image capturing techniques) as 
compared to the R and B channels. Gray-level distributions of the three RGB channels for the sample 
image in Fig. 1 are shown in Fig. 2. 
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Fig. 2. Left: Gray scale distribution for image from Fig. 1, top to bottom: Red, Green, and Blue channels; Right: Zooming in on left side  
of distributions in Red (top) and Green (bottom) channels. The x-axis is the gray scale intensity from 0 to 255, and the y-axis is number  

of pixels at that gray scale intensity. 

Table 1. Variances of individual color channels (RGB) over 10 blood images with different noise characteristics. 
   

Color Channel Image Characteristics Variance    
Red normal images 1.2395*108 

   
Green normal images 1.4088*108 

   
Blue normal images 0.94807*108 

   
Red additive medium noisy images 2.19*108 

   
Green additive medium noisy images 2.99*108 

   
Blue additive medium noisy images 1.75*108 

   
Red additive high noisy images 1.14*108 

   
Green additive high noisy images 1.41*108 

   
Blue additive high noisy images 0.82*1008 

 
The variance of a data set measures how far the values are spread out. We can validate better 

resolution of the G channel by considering variances of the three RGB channels (Table 1) over the set of 
10 sample images (see Table 5) with different noise. The variance is consistently highest for  
the G channel. 

We will consider YIQ color space in addition to RGB and HIS spaces. YIQ encoding is composed 
of two kinds of information, luminance Y and color information (I and Q). The main reason for 
introducing YIQ is specific sensitivity of human visual system which is more aware of changes in 
luminance than to changes in hue or saturation and thus a wider bandwidth should be dedicated to 
luminance than to color information. So, we also compare the Y channel with the G channel of the RGB 
color space. Since in YIQ encoding wide bandwidth is dedicated to the Y channel, the opacity and 
clearance of an object in Y channel is expected to be very comparable with G channel, compare Fig. 3 for 
a normal, no noise added sample from Table 5. 

 

Fig. 3. Left to right: G channel (RGB encoding), Y Channel (YIQ encoding). 
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Fig. 4. Left: Gray scale distribution from the image in Fig. 1, top to bottom: G (RGB) and Y (YIQ) channels; Right: Zooming in on left size 
of distribution: G (RGB), Y (YIQ). The x-axis is the gray scale intensity from 0 to 255, and the y-axis is number of pixels  

at that gray scale intensity. 

Table 2. Variance of G (RGB ) and Y (YIQ ) over 10 blood smear images with different noise characteristics. 
   

Color channel Image characteristics Variance    
G normal images 1.4088*1008 
   

Y normal images 1.2707*1008 
   

G additive medium noisy images 2.99*1008 
   

Y additive medium noisy images 1.47*1008 
   

G additive high noisy images 1.41*1009 
   

Y additive high noisy images 0.98*1009 

 
Experiments with the same 10 of blood smear images again show that the G channel has a wider 

range of gray-level values than Y channel outcome (Fig. 4). In addition, the variance is highest for the G 
channel (see Table 2). We conclude that the G channel is the most robust channel which maintains more 
details than other gray scale encodings, so this channel is selected for further processing as described 
next. 

3.2. IMAGE DENOISING 

Noise gives an image an undesirable visual appearance. However, the most dominant effect is that 
noise reduces the visibility of certain features within the image. Noise can be categorized into salt-pepper 
noise, Gaussian noise, speckle noise, etc. [30]. All medical and clinical images may contain some visual 
noise from a variety of sources but noise is much more prevalent in certain types of imaging procedures 
than in others. For example, noise is significant in Magnetic Resonance Imaging, Computerized 
Tomography, and Ultrasound Imaging, while Radiography produces images with the least amount of 
noise [36].  

To design a reliable segmentation and cell counting system that may be used under different 
conditions such as a variety of blood smear staining techniques, types of chemical materials used, 
microscope types, illumination conditions, human error, etc., a denoising pre-processing step is required. 
One of the most practical and widely used denoising techniques is the wavelet shrinkage approach which 
thresholds the wavelet coefficients of an image. Wavelet coefficients having small absolute values are 
considered to encode mostly noise and very fine details of the signal. In contrast, the important 
information is encoded by the coefficients having large absolute values. Removing the small coefficients 
and then reconstructing the signal could produce signal with lesser amount of noise. The biggest 
challenge in the wavelet shrinkage approach is finding an appropriate threshold value [9].  

The wavelet shrinkage approach can be summarized as follows:  
1. Apply the wavelet transform to the signal, 
2. Estimate a threshold value, 
3. Remove (zero out) the coefficients that are smaller than the threshold, 
4. Reconstruct the signal (apply the inverse wavelet transform) 
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Fig. 5. Denoising techniques: a) original image; b) noisy image; c) median; d) soft thresholding; e) Bivariate. 

In [33,34] Daubechies wavelet with soft thresholding and bivariate shrink filter has been used and 
the performance of the algorithms was compared according to the peak signal-to-noise ratio (PSNR).   
The optimal thresholding is obtained by tuning soft thresholding using  experience and the type of 
images. In Fig. 5 we compare wavelet denoising with median denoising and bivariate denoising.  
The original images have been corrupted by moderate additive Gaussian noise with standard deviation 30, 
while Table 3 presents PSNR results for both moderate and high additive Gaussian noise with standard 
deviation 30 and 100, respectively. 

Table 3. PSNR levels for various denoising techniques for images with moderate and high noise. 

 Additive Noise Deviation 

  30 100 

P
SN

R
 noisy image 19.2149 10.4516 

image denoised  by median filter 25.5666 16.5183 

image denoised  by thresholding filter 23.546 18.3421 

image denoised  by bivariate filter 27.6236 20.4822 
 
From the experimental results it can be concluded that for moderate noise the Bivariate Shrink filter 

produces the best results. It produces the maximum PSNR for the output image compared to the other 
filters. However, the bivariate output is somehow blurred and some post-processing involving de-blurring 
and edge preserving may be needed. For images significantly corrupted by noise with low PSNR value 
(10.4516) the bivariate shrink filter is again the best. It produces the maximum acceptable PSNR for the 
output image compared to the other filters. It can also be observed that for high noise soft thresholding 
produces better results than the classical median filter. 

3.3. EDGE PRESERVATION 

Edge preservation is a technique to recover degraded and blurred boundaries in images while 
reducing the negative effect of noise in images. This step can serve as a preliminary step to binarization 
and object segmentation. Different edge preservation methods have been proposed including median filter 
symmetrical nearest neighbor (SNN) filter [15], convolution kernel filters [2], preserving color reduction 
method [24], bilateral techniques [37] and the Kuwahara filter [19,29]. The non-linear Kuwahara can be 
implemented by examining the four overlapping quadrant regions surrounding a pixel and then selecting 
the one with the smallest variance, and using the average as the central pixel value. Based on 
experimentation and the discussion presented in the original paper [19], due to the intrinsic characteristics 
(complex texture) of blood smear particles, we note that the Kuwahara has the sharpest edges which leads 
to better binarization in next step (see Fig. 6). However, the output maybe somewhat toothy.  
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Fig. 6. Edge preservation: a) bilateral, b) convolution kernel, c) EDGEPS [36], d) SNN, and e) Kuwahara. 

3.4. BINARIZATION WITH NIBLACK & OTSU 

After pre-processing (denoising and edge enhancement) we applied several well-known binarization 
algorithms including Niblack [23], Bernsen [5], Sauvola [32] and Otsu [28] to improve 
foreground/background segmentation of blood smear microscopic images. Binarization is the last step 
before computing cell sizes and their enumeration. Binarization can be applied with either global or local 
thresholding. 

For the global approach, a constant intensity threshold value T  (between 0 and 255) is chosen.  
If the intensity value of any pixel (in the grey scale) of an input image is greater than T , then pixel is set 
to white otherwise it is set to black. However, in practice we have a variety of intensities of grey in the 
foreground and background. In blood smear slides, because of different kinds of image acquisition, 
illumination, staining, and since there are frequently overlapping and very closely positioned particles, 
finding a global value T  to separate the slide into two ideal regions of blood particles and background is 
not always simple and perhaps not even possible (closely positioned pairs of particles will be merged into 
single particles, regardless of any fine tuning of the value of T ).  

To our knowledge, there are no comparative evaluations of the efficiency of binarization algorithms 
at binarizing medical blood smear images. Here we aim at determining the binarization algorithm best 
suited for microscopic blood smear images. Some papers on blood segmentation such as [4] used Otsu 
approach (one of the most popular threshold selection methods [39]) using global thresholding.  
In Niblack [23], the local thresholding is based on ( , ) ( , ) * ( , )T x y m x y k s s y= + , where ( , )m x y  and 

( , )s x y  are the average and the standard deviation of a local area for which the size of the window must 
be large enough to suppress  noise in the image while at the same time it has to be small enough to 
maintain local details. The value of k  decides how much of the total print object boundary is taken as a 
part of the given object. Coefficient k  helps to separate and adjust the percentage of pixels that belong to 
foreground (especially in the boundaries). In the experiment involving Niblack algorithm 1515×  
neighborhood and 0.1k=  are selected.  

We propose a more efficient and more accurate binarization method by combining the Otsu (global 
thresholding) and Niblack (local thresholding) approaches. In particular, we aim at more accuracy in 
terms of minimizing the number of close pairs of particles that are merged into single particles during 
binarization process. 

To determine the best binarization algorithm, we determine the statistical significance between the 
algorithms by using the normalized cross-correlation (NCC) approach ( , )u vγ  (see Eq. 1) which is often 
used in template matching and pattern recognition problems for determining the degree of similarly 
between two images [6]. In practice, the performance and reliability of binarization algorithm for a gray 
scale image is defined as the value of the NCC to quantify the similarity between two imagesA  andB  
(as a template matching using green channel output of each image). If A  exactly matches B  then γ   
(the array of correlation coefficients) is equal to 1 while in cases of exact dissimilarity result in 0γ =   
In general, the coefficients in γ  typically vary between -1 and +1.  
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The resulting coefficients in the matrix of NCC cannot all be the same and the measurement of 
performance and efficiency are subjected to a comparison using the average (expressed as the mean, 
median, and mode), standard deviation and range to show how much variation or dispersion there is 
between existing values. 

Table 4. Summary of  NCC data for each binarization algorithm performance over three different cases: (top to bottom) total over 10 regular 
blood smear images (N0–N9); total over 10 normal and regular separated WBCs; total over few disjoint close RBCs  

in 10 regular images (N0–N9). 

 
In our experimentation to study the effect of noise on binarization results, we degrade the objects 

(foreground) in samples by adding Gaussian and speckle noise to simulate the worst cases that may 
appear in image capturing. Also to simulate dirty slides or camera lens a 2, 3 pixel Gaussian blur is 
applied. The NCC results are presented in Tables 4a (on general blood smear images), 4b (impact of 
binarization on WBC) and 4c (considering the effect of binarization on RBC). In terms of NCC values the 
highest means are generated by Otsu as a global thresholding and the dispersion and variation are low 
which prove the acceptable degree of similarity between image and its template. However, in WBC 
segmentation and discrimination between WBCs and RBCs this approach may not work and also may 
join disjoint close objects as it uses global thresholding over all slides and of course cannot maintain all 
local details by again using global thresholding over all slides (see Fig. 7c, d). WBCs nucleus and 
cytoplasm intensity differs from intensity of dominant of RBCs and as the number of RBCs is about 100 
times larger than WBCs in normal blood smear  then global thresholding is influenced by RBCs rather 
than WBCs. Therefore, WBC boundary and its components are degraded and damaged by Otsu global 
thresholding in spite of having higher template matching. We investigate this problem by running each of 
four algorithms (see Fig. 7) and binarizing the samples containing single WBCs and also another subset 
of samples including a few RBCs (see Fig. 7 with two or three maximum disjoint RBCs with small gaps 
between objects). The NCC values are collected from a single run over sub-images (WBCs & few RBCs) 
yielding higher NCC values related to Niblack in these cases. With Niblack algorithm, in spite of higher 
NCC in these small windows (masks), local thresholding produces spurious objects and noisy spots 
despite minor intensity value differences in the background region, therefore the resulting binarized 
image always has noise in the background area, even if the proper local threshold k  value is chosen.  
Thus we use two criteria to reconcile higher NCC in small windows (Niblack) (see Tables 4b and 4c) 

10 Normal and Regular Images 

Algorithm Mean  Median Mode StdDev  Range Min  Max          
Otsu -0.0094 -0.0111  0  0.9410*105 1.0803  -0.1866 0.8937         

Bernsen  -0.0096 -0.0101  0  1.16*105 0.7935  -0.2882 0.5055         
Sauvola  -0.0111 -0.0150  0  1.53*105 0.6727  -0.2754 0.3973         
Niblack  -0.0111 -0.0143  0  1.468*105 0.7328  -0.2654 0.4674 

Normal and Regular WBCs images 

Algorithm Mean  Median Mode StdDev  Range Min  Max          
Otsu 0.0259  0.0459  0  3.0834*105 1.2122  -0.3870 0.8252         

Bernsen  0.0262  0.0437  0  0.3987*105 1.1234  -0.4192 0.7042         
Sauvola  0.0304  0.0390  0  0.5008*105 1.0516  -0.4021 0.6495         
Niblack  0.0310  0.0383  -0.4320 0.5222*105 1.0942  -0.4320 0.6622 

Normal and Regular RBCs images 

Algorithm Mean Median Mode StdDev Range Min Max         
Otsu 0.0083 -0.0094 0 886.7119 1.1373 -0.2159 0.9214         

Bernsen 0.0111 -0.0029 -0.0283 206.1605 0.9564 -0.2439 0.7125         
Sauvola 0.0150 0.0114 0 216.3476 0.9460 -0.2852 0.6608         
Niblack 0.0158 0.0153 0 227.5969 0.9023 -0.3206 0.5816 
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including WBCs and few neighboring RBCs (better segmentation in foreground) and higher NCC in 
global thresholding by Otsu (see Table 4a) to avoid having spurious spots in background. 

 

Fig. 7. Binarization results using the algorithm of: a) Bernsen; b) Sauvola; c) Otsu; and d) Niblack. 

Computer experiments with different samples and initial conditions (see Fig. 7) show that Niblack 
approach is the most reliable method to maintain disjoint components which is crucial in avoiding over or 
under segmentation. In the previous work [4] Otsu thresholding was used for binarization; however, this 
method tends to result in overlapping objects that are too close to one another which in turn leads to false 
results after segmentation. In our modified version pixels are labeled as backgrounds pixels if they are 
labeled as either background pixels in Niblack or in Otsu and the remaining pixels are kept as foreground 
pixels (objects). Using this merging process, we mitigate the problem of extra small spurious regions 
produced by the Niblack algorithm. 

3.5. SIZE ESTIMATION 

 Binarization and some post-processing to enhance the quality of binary image is followed by 
feature extraction which helps to differentiate different particles in the image. A normal blood sample 
typically contains two major particles: RBC with a normal size probability distribution function (PDF) 
with average size around 6.0-8.5  and WBC with average size around 7-18 including nucleus and 

cytoplasm and being about 1-3 times bigger than the normal and mature RBCs. We use size 
characteristics as an effective factor to distinguish between the two main types of cells. Granulometry 
[38] can determine the size distribution of image objects without explicitly segmenting each object first. 
According to normal blood PDF and RBC to WBC ratio, the maximum regional peak in pattern spectrum 
diagram correlates to the number of RBCs with an acceptable RBC radius size.  

Granulometry uses structure elements which are morphologically dilated to the maximum size and 
applied to the image. The shape of structure element depends on the type of objects under processing. 
During the process granulometric density function is determined. The granulometric algorithm starts by 
applying an opening morphology along with defined structure element (SE). In normal blood smear 
images, all available particles are approximately circular. Hence, we select (disk) shape as default (SE) 
for granulometric algorithm. In an ideal output, we expect only one peak for a single complete circle, but 
the incomplete circular object shown in Fig. 8 produces local maxima. We call this undesirable effect an 
edge fracture. We just observe that after applying the edge detection and skeletonization algorithms to 
real cell images which are typically not complete curves the observed circular pieces are regarded as  
a new objects surrounded between two ideal complete circles. Consequently we can expect in 
granulometric output at least two local regional peaks. By this simple work, we find that blood smear 
particles are not complete circular object and there are always discrete components on curve tracer, which 
is another reason for undesirable local maxima. 

 

Fig. 8. Granulometry over simple circle. 
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 Overall, applying granulometry to RBCs images in normal blood smear can be very reliable in 
determination and estimating their size. But for abnormal samples with different shapes or with extra 
overlapping between the particles granulometric approach may fail.  

3.6. SEGMENTATION AND COUNTING ALGORITHM 

Two sub-images containing individual WBCs indicators and RBCs are separated in order to count 
peripheral cells. This is done in two main procedures explained in detail in [13]. There are different 
methods which are directly or indirectly used to separate and segment objects in disjoint images such as 
active contours and watershed. Typically watershed is incorporated into the immersion and toboggan 
methods [20]. The accuracy and efficiency of watershed segmentation over images is directly related to 
the previous steps. In practice, a watershed algorithm works best for smooth convex objects that don’t 
overlap too much. It cannot be an efficient approach in all microscopic images with extra overlapping 
which can happen for some diseases.  

A set of 10 different blood smear test images with a vast variety of image characteristics from a 
normal thin blood film till very degraded blurry image (see the sample table) were used to show that the 
proposed framework is accurate and also is robust for degraded images which are blurry and (or) noisy.  
In Table 5 ten blood smear slides (numbered N0 through N9) are denoised by bivariate wavelet approach 
within our framework. The computed blood cell count results are compared with manual counts of the 
number of RBCs and WBCs (the differences between the computed counts and the manual counts are 
numbers in parenthesis). In the last four rows of Table 5, also the proficiency of the denoising approach 
was tested by using different additive noise over images in two different noise variance values at high 
(variance=150, mean=0) and medium (variance=30, mean=0) levels.  

In Table 6, we give confusion matrices (with normalized rows) of the framework when applied to 
normal, moderately noisy and highly noisy blood smear images. In particular, for normal images, 90% of 
known RBCs were classified as such, with this classification rate decreasing to 78% for moderately noisy 
images, and then to 58% for highly noisy images. So, based on the confusion matrices with three classes: 
RBC, WBC and others composed of platelets and other possible existing parasites (in abnormal cases)  
the proposed consecutive steps are reliable and accurate even in presence of moderate and high level 
noise yielding acceptable accuracy. 

Table 5. Experimental results of ten different blood smear images (numbered N0–N9). Counts for RBCs and WBCs are given from manual 
counts, as well as determined by our framework using Bivariate denoising. Values given in parentheses are the differences between counts 

computed and those obtained by a manual count (negative values indicate an under count; positive values indicate an over count). 

Image # Image Characteristics Manual Count Our frame work 
RBC WBC RBC WBC   

N0 normal sample 104 1 98(-6) 1(0)       
N1 without WBCs 75 0 66(-9) 0(0)       
N2 blurred and overlapped 125 2 110(-15) 2(0)       
N3 normal sample 105 3 99(-6) 3(0)       
N4 Blurred 325 1 314(-11) 1(0)       
N5 Blurred 66 2 62(-4) 2(0)       
N6 numerous overlapping 90 2 76(-14) 2(0)       
N7 WBCs touch RBCs 18 1 16(-2) 1(0)       
N8 WBCs touch RBCs 69 2 65(-4) 2(0)       
N9 blurred,numerous overlaps,WBCs touch RBCs 101 1 83(-18) 2(1)       
N6 additive medium noise 90 2 77(-13) 3(1)       
N9 additive medium noise 120 1 78(-42) 2(1)       
N6 additive high noise 90 2 70(-20) 1(-1)       
N9 additive high noise 120 1 81(-39) 5(4) 
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Table 6. Confusion matrices for proposed framework (left to right) total over 10 regular (N0–N9); 6 with moderate noise 
 (N1, N2, N5, N6, N8, and N9); same 6 images with high noise.  

 
 
 
 
 
 

4. FUTURE WORK AND CHALLENGES 

Automatic CBC (complete blood count) is a challenging problem. It involves classification of WBC 
into five main categories such as basophils, eosinophils, lymphocytes, monocytes and neutrophils, and 
detection and categorization of pathologies such as anemias, leukaemias, lymphomas, cholera, malaria 
and many others. As different WBC and pathologies may be differentiated by shape, texture, color and 
other visual cues advanced image processing and machine learning techniques need to be utilized to build 
reliable classification systems. An important problem to address is the separation of different WBCs 
classes, as well as the identification of deformed RBC and WBC shapes with diseases such as malaria, 
leukemia, anemia, etc. This will be accomplished using cutting edge image segmentation techniques in 
combination with advanced machine learning techniques for classification, with the goal of improving the 
accuracy of CBC reports.  

5. CONCLUSIONS 

In this paper we discussed automatic processing and recognition of histopathological images of red 
and white blood cells. An efficient algorithm for fully automated detection and segmentation of blood 
cells microscopic imagery has been presented. The algorithm is accurate and offers remarkable 
segmentation accuracy. There are many challenging problems in automatic processing of 
histopathologies. The main problems include large variation of blood cells, occlusions, low quality of 
images and difficulties in getting real data. These problems will be addressed in the future work. 
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