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APPLICATION OF PATTERN RECOGNITION TECHNIQUESFOR THE
ANALYSISOF THIN BLOOD SMEAR IMAGES

In this paper we discuss applications of pattenogaition and image processing to automatic praegsand
analysis of histopathological images. We focus amting of Red and White blood cells using micrggcomages of
blood smear samples. We provide literature survelypoint out new challenges. We present an impraeddccounting
algorithm.

1. MANUAL ANALYSIS OF BLOOD SMEAR IMAGES

Analysis of microscopic medical images is an imaottinterdisciplinary problem involving both
physicians and computer scientists. One of the rtapband active areas of research is the probliem o
counting blood cells (CBC) [12] which is used agesaing test to check such disorders as infections,
allergies, problems with clotting, and it helps gtiasing and managing a large number of diseases
In practice a panel of tests is carried out thaingxe different blood components such as countinigew
blood cells (WBC) [12-Ch.159, 1], white blood celiéfferential, counting red blood cells (RBC)
[12-Ch.159], checking for signs of disease and dbenting the number of infected cells. In normal
human blood, there are 4,000,000-6,000,000, 4,0000D, 150,000-450,000 per microliter of RBC,
WBC, and normal platelet counts, respectively, vgtatelets usually present in complexes rather than
singularly [12]. But instead of the special casespbntaneous bleeding, platelet counts are rarely
requested in a CBC, so in this work we will focusRBC and WBC counts.

A manual diagnosis would search for abnormalitissthe blood cells and particles while
performing a CBC. Complications may arise fromltirge number of hematic pathologies [31] including
the large number of WBC sub-types [22], which matkesanalysis prone to human error. This process
can be automated by computerized techniques wineare reliable and economical. Therefore there is
always a need for the development of systems toiggoassistance to hematologists and to relieve the
physician of drudgery or repetitive work.

Our goal is to develop and validate an image piogsand pattern recognition system to quantify
and detect microscopic particles on thin blood smsédes to enhance automated system to charagteriz
blood health status of patient. In essence we deekietermine a fast, accurate mechanism for
segmentation and gather information about distigioubf microscopic particles which may help to
diagnose the degree of any abnormalities duringjceli analysis. Automatic detection of pathologies
from histopathological images is currently veryhaetand important area of research.

2. AUTOMATIC PROCESSING OF BLOOD SMEAR IMAGES

During blood film examination, the individual types blood smear particles (leukocytes and
erythrocytes) are enumerated and then blood slatesusually made to investigate hematological
problems [12]. The history of research into auta@dablood slide examination dates back to 1975, ;ee
Bentley & Lewis [3].

There is a vast amount of literature dedicated ifterdntial blood counts. To aid in the
segmentation of digital images, thresholding haanheésed as a pre-processing step [11]. But if ¢fis ¢
are relatively faint compared to the backgroundisasommon with RBC in blood smear digital images,
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this can lead to further problems which in turnuieg| additional processing. Di Rubesdbal. [7] follow
up the thresholding step by segmenting using dabksnorphological operators and the watershed
algorithm [10] to demarcate cell boundaries.

Other common automatic approaches for boundaryctieteare active contours or snakes [17,25].
In addition to being dependent on the accurateept@nt of the initial contour, the boundaries of ¢bés
detected may not follow the actual contours oftited cells [26]. In related work [27] active coate
were also used to track the boundaries of WBC baluded cells were not accurately handled. Kuehar
al. [18] introduced a new cell edge detector whilenigyto determine accurate nucleus edges. A two-step
segmentation framework was proposed by Sinha amtBRa@shnan [35] using k-means clustering of the
data mapped to HSV color space followed by usirapshcolor, and texture features in a neural nétwor
classifier. A watershed segmentation algorithm used in [16] for WBC determination.

WBC classification in the recent work by Hamghalamal. [14] utilizes Otsu’s thresholding
method to segment nuclei. The results are indepgnofethe intensity differences in Giemsa-stained
images of peripheral blood smear and active costarg used to extract precise boundary of cytoplasm

As mentioned previously, the nature of automatmcpssing of microscopic images in medicine is
a complicated task. This is because some of the Ibasks to be performed such as pre-processing,
segmentation, classification, object recognitiord anference require extensive understanding of the
specific problem. This requires comprehensive keogk in many disciplines such as medicine,
computer science, image and signal processing.

3. METHODOLOGY AND ALGORITHMS

3.1.IMAGE GRAY SCALE CONVERSION

The normal blood images used in this research sered in JPEG format of size 'x212 pixels.
The first step in processing is to choose a prgpay scale channel. Some previous published waoell us
the green channel of the RGB color encoding toyaeablood image data [8] or perform segmentation
blood smear particles by choosing an appropriatstiold of this channel [21]. Also with the present
white blood cells, granular cytoplasm pixels canrbere easily separated from others in the image
histogram of the G (green) channel (see Fig. 1[38]). We show that the best choice for convertimg
blood smear images to gray scale is to use the &&neh rather than the other channels of the RGB
encoding, or even the Y channel of YIQ encodinge Teason is that green channel is better at
maintaining high frequency feature information acwhtrasts in gray scale intensity are more easily
distinguished in the G channel.
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Fig. 1.(Left to right): Blue, Red, and Green channels (omdjiwith no noise added; sample from Table 5).

Experiments on a set of 10 sample blood smear isnslgew that the G channel has a wider range
of gray-level values in the intensity histogramrnththe R and B channels and thus keeps more feature
details (see Fig. 2). The G channel generally hashighest contrast between structures even in the
presence of different backgrounds (e.g., diffestaining and/or different image capturing techngjuses
compared to the R and B channels. Gray-level digions of the three RGB channels for the sample
image in Fig. 1 are shown in Fig. 2.
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Fig. 2. Left: Gray scale distribution for imagerd-ig. 1, top to bottom: Red, Green, and Blue chanfibht: Zooming in on left side
of distributions in Red (top) and Green (bottom)ratels. The x-axis is the gray scale intensity fdto 255, and the y-axis is number
of pixels at that gray scale intensity.

w

Table 1.variances of individual color channels (RGB) overbl@od images with different noise characteristics.

Color Channel Image Characteristics Variance
Red normal images 1.2395%10
Green normal images 1.4088*10
Blue normal images 0.94807*10
Red additive medium noisy images 2.19%10
Green additive medium noisy imagels 2.99%10
Blue additive medium noisy images$ 1.75%10
Red additive high noisy images 1.14%10
Green additive high noisy images 1.41%10
Blue additive high noisy images 0.82*10

The variance of a data set measures how far theesvadre spread out. We can validate better
resolution of the G channel by considering varianokethe three RGB channels (Table 1) over thefket
10 sample images (see Table 5) with different noiBkee variance is consistently highest for
the G channel.

We will consider YIQ color space in addition to R@Bd HIS spaces. YIQ encoding is composed
of two kinds of information, luminance Y and colorformation (I and Q). The main reason for
introducing YIQ is specific sensitivity of humansual system which is more aware of changes in
luminance than to changes in hue or saturationthod a wider bandwidth should be dedicated to
luminance than to color information. So, we alsmpare the Y channel with the G channel of the RGB
color space. Since in YIQ encoding wide bandwidthdedicated to the Y channel, the opacity and
clearance of an object in Y channel is expectdattoery comparable with G channel, compare Figr3 f
a normal, no noise added sample from Table 5.

Fig. 3.Left to right: G channel (RGB encoding), Y Channel@¥¢ncoding).
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Fig. 4. Left:Gray scale distribution from the image in Fig.dp to bottom: G (RGB) and Y (YIQ) channels; Right: Avog in on left size
of distribution: G (RGB), Y (Y1Q). The x-axis is tlggay scale intensity from 0 to 255, and the y-&isumber of pixels
at that gray scale intensity.

Table 2.variance of G (RGB ) and Y (YIQ ) over 10 blood smanages with different noise characteristics.

Color channel I mage char acteristics Variance
G normal images 1.4088*10
Y normal images 1.2707+16
G additive medium noisy images 2.99*10*
Y additive medium noisy imagegs 1.47*10"
G additive high noisy images 1.41%0
Y additive high noisy images 0.98*10

Experiments with the same 10 of blood smear imaggsén show that the G channel has a wider
range of gray-level values than Y channel outcoRig. @). In addition, the variance is highest floe G
channel (see Table 2). We conclude that the G @lasnhe most robust channel which maintains more
details than other gray scale encodings, so theswrdl is selected for further processing as desdrib
next.

3.2.IMAGE DENOISING

Noise gives an image an undesirable visual appeardtowever, the most dominant effect is that
noise reduces the visibility of certain featurethwa the image. Noise can be categorized intosgbper
noise, Gaussian noise, speckle noise, etc. [30JmAdical and clinical images may contain some alisu
noise from a variety of sources but noise is muchenprevalent in certain types of imaging proceslure
than in others. For example, noise is significamt Magnetic Resonance Imaging, Computerized
Tomography, and Ultrasound Imaging, while Radioggaproduces images with the least amount of
noise [36].

To design a reliable segmentation and cell counsiygtem that may be used under different
conditions such as a variety of blood smear stgirtechniques, types of chemical materials used,
microscope types, illumination conditions, humaroeretc., a denoising pre-processing step is redqui
One of the most practical and widely used denoigggniques is the wavelet shrinkage approach which
thresholds the wavelet coefficients of an imagev¥lt coefficients having small absolute values are
considered to encode mostly noise and very finaildebf the signal. In contrast, the important
information is encoded by the coefficients haviaggé absolute values. Removing the small coeffisien
and then reconstructing the signal could produgmasi with lesser amount of noise. The biggest
challenge in the wavelet shrinkage approach isrimdn appropriate threshold value [9].

The wavelet shrinkage approach can be summarizidlass:
Apply the wavelet transform to the signal,
Estimate a threshold value,
Remove (zero out) the coefficients that are sméilen the threshold,
Reconstruct the signal (apply the inverse wavedgtsform)

PwbdPE
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Fig. 5.Denoising techniques: a) original image; b) noimgage; c) median; d) soft thresholding; e) Bivariate

In [33,34] Daubechies wavelet with soft threshoddand bivariate shrink filter has been used and
the performance of the algorithms was comparedrdowp to the peak signal-to-noise ratio (PSNR).
The optimal thresholding is obtained by tuning dbitesholding using experience and the type of
images. In Fig. 5 we compare wavelet denoising witadian denoising and bivariate denoising.
The original images have been corrupted by modeddéive Gaussian noise with standard deviation 30
while Table 3 presents PSNR results for both mddesad high additive Gaussian noise with standard
deviation 30 and 100, respectively.

Table 3.PSNR levels for various denoising techniques forgesawith moderate and high noise.

Additive Noise Deviation
30 100
noisy image 19.2149 10.4516
% image denoised by median filter 25.5666 16.5183
a8 image denoised by thresholding filter 23.546 18134
image denoised by bivariate filter 27.6236 20.4822

From the experimental results it can be conclutiatlfor moderate noise the Bivariate Shrink filter
produces the best results. It produces the maxifR@&MNR for the output image compared to the other
filters. However, the bivariate output is somehdurted and some post-processing involving de-khgyri
and edge preserving may be needed. For imagedicagiy corrupted by noise with low PSNR value
(10.4516) the bivariate shrink filter is again thest. It produces the maximum acceptable PSNRhéor t
output image compared to the other filters. It edso be observed that for high noise soft threshgld
produces better results than the classical medtan f

3.3.EDGE PRESERVATION

Edge preservation is a technique to recover dedraahel blurred boundaries in images while
reducing the negative effect of noise in imagess Bkep can serve as a preliminary step to bindiza
and object segmentation. Different edge presematiethods have been proposed including medianm filte
symmetrical nearest neighbor (SNN) filter [15], eolution kernel filters [2], preserving color redion
method [24], bilateral techniques [37] and the Khama filter [19,29]. The non-linear Kuwahara can be
implemented by examining the four overlapping gaatiregions surrounding a pixel and then selecting
the one with the smallest variance, and using therage as the central pixel value. Based on
experimentation and the discussion presented inrigeal paper [19], due to the intrinsic charaistecs
(complex texture) of blood smear patrticles, we rib&t the Kuwahara has the sharpest edges whidhk lea
to better binarization in next step (see Fig. @wdver, the output maybe somewhat toothy.
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Fig. 6.Edge preservation: a) bilateral, b) convolutiomletrc) EDGEPS [36], d) SNN, and e) Kuwahara.

3.4.BINARIZATION WITH NIBLACK & OTSU

After pre-processing (denoising and edge enhancgmwwenapplied several well-known binarization
algorithms including Niblack [23], Bernsen [5], Sala [32] and Otsu [28] to improve
foreground/background segmentation of blood smearoscopic images. Binarization is the last step
before computing cell sizes and their enumeranarization can be applied with either global acdl
thresholding.

For the global approach, a constant intensity tiokesvalue T (between 0 and 255) is chosen.
If the intensity value of any pixel (in the greyat&) of an input image is greater trTnthen pixel is set
to white otherwise it is set to black. However practice we have a variety of intensities of gneyhe
foreground and background. In blood smear slidesabse of different kinds of image acquisition,
illumination, staining, and since there are fredlyeaverlapping and very closely positioned pads;!
finding a global valu¢T to separate the slide into two ideal regions obtlparticles and background is
not always simple and perhaps not even possilbsdly positioned pairs of particles will be mergetd
single particles, regardless of any fine tuninghefvalue o'T).

To our knowledge, there are no comparative evaloatof the efficiency of binarization algorithms
at binarizing medical blood smear images. Here iwe & determining the binarization algorithm best
suited for microscopic blood smear images. Somensapn blood segmentation such as [4] used Otsu
approach (one of the most popular threshold selectnethods [39]) using global thresholding.
In Niblack [23], the local thresholding is based ®fx,y)=m(x,y)+k*gs y), where m(x,y) and

s(x,y) are the average and the standard deviation ofad &vea for which the size of the window must
be large enough to suppress noise in the imagk wahithe same time it has to be small enough to
maintain local details. The value k*decides how much of the total print object bougdartaken as a
part of the given object. Coefficie k helps to separate and adjust the percentage elsgixat belong to
foreground (especially in the boundaries). In thgesiment involving Niblack algorithnm15x15
neighborhood ank=0.1 are selected.

We propose a more efficient and more accurate izataon method by combining the Otsu (global
thresholding) and Niblack (local thresholding) aggmhes. In particular, we aim at more accuracy in
terms of minimizing the number of close pairs oftigées that are merged into single particles dyirin
binarization process.

To determine the best binarization algorithm, weedgine the statistical significance between the
algorithms by using the normalized cross-correta{fidCC) approacty(u,v) (see Eq. 1) which is often
used in template matching and pattern recognitimblpms for determining the degree of similarly
between two images [6]. In practice, the perforneaaed reliability of binarization algorithm for aay
scale image is defined as the value of the NCCutntify the similarity between two ima¢AsancB
(as a template matching using green channel owpatch image). I A exactly matche:B then y
(the array of correlation coefficients) is equalltavhile in cases of exact dissimilarity result jy=0

In general, the coefficients ip typically vary between -1 and +1.
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The resulting coefficients in the matrix of NCC nah all be the same and the measurement of
performance and efficiency are subjected to a cosga using the average (expressed as the mean
median, and mode), standard deviation and rangh®w how much variation or dispersion there is
between existing values.

Table 4.Summary of NCC data for each binarization algorifferformance over three different cases: (top ttobojttotal over 10 regular
blood smear images (NO-N9); total over 10 normdlr@gular separated WBCs; total over few disjoinsel®BCs
in 10 regular images (NO—N9).

10 Normal and Regular I mages
Algorithm Mean M edian Mode StdDev Range Min M ax
Otsu -0.0094 -0.0111 0 0.9410*10 | 1.0803 -0.1866 0.8937
Bernsen -0.0096 -0.0101 0 1.16*10 0.7935 -0.2882 0.5055
Sauvola -0.0111 -0.0150 0 1.53*10 0.6727 -0.2754 0.3973
Niblack -0.0111 -0.0143 0 1.468*10 | 0.7328 -0.2654 0.4674
Normal and Regular WBCsimages
Algorithm Mean Median Moaode StdDev Range Min M ax
Otsu 0.0259 0.0459 0 3.0834410 | 1.2122 -0.3870 0.8252
Bernsen 0.0262 0.0437 0 0.3987*10 | 1.1234 -0.4192 0.7042
Sauvola 0.0304 0.0390 0 0.5008*10 | 1.0516 -0.4021 0.6495
Niblack 0.0310 0.0383 -0.4320 0.5222*10| 1.0942 -0.4320 0.6622
Normal and Regular RBCsimages
Algorithm Mean Median Moaode StdDev Range Min M ax
Otsu 0.0083 -0.0094 0 886.7119 | 1.1373 -0.2159 0.9214
Bernsen 0.0111 -0.0029 -0.0283 206.1605 0.9564 -0.2439 2571
Sauvola 0.0150 0.0114 0 216.3476 | 0.9460 -0.2852 0.6608
Niblack 0.0158 0.0153 0 227.5969 | 0.9023 -0.3206 0.5816

In our experimentation to study the effect of naasebinarization results, we degrade the objects
(foreground) in samples by adding Gaussian andképewise to simulate the worst cases that may
appear in image capturing. Also to simulate ditiges or camera lens a 2, 3 pixel Gaussian blur is
applied. The NCC results are presented in TabletoAageneral blood smear images), 4b (impact of
binarization on WBC) and 4c (considering the effgfdbinarization on RBC). In terms of NCC values th
highest means are generated by Otsu as a glolshtiiding and the dispersion and variation are low
which prove the acceptable degree of similaritywleein image and its template. However, in WBC
segmentation and discrimination between WBCs an@®Ris approach may not work and also may
join disjoint close objects as it uses global thadding over all slides and of course cannot maingdl
local details by again using global thresholdingeroall slides (see Fig. 7c, d). WBCs nucleus and
cytoplasm intensity differs from intensity of doramt of RBCs and as the number of RBCs is about 100
times larger than WBCs in normal blood smear thleal thresholding is influenced by RBCs rather
than WBCs. Therefore, WBC boundary and its comptsnare degraded and damaged by Otsu global
thresholding in spite of having higher template chatg. We investigate this problem by running eath
four algorithms (see Fig. 7) and binarizing the pla® containing single WBCs and also another subselt
of samples including a few RBCs (see Fig. 7 witb tw three maximum disjoint RBCs with small gaps
between objects). The NCC values are collected fxamgle run over sub-images (WBCs & few RBCs)
yielding higher NCC values related to Niblack irsk cases. With Niblack algorithm, in spite of kigh
NCC in these small windows (masks), local thresingldoroduces spurious objects and noisy spots
despite minor intensity value differences in theklggound region, therefore the resulting binarized

image always has noise in the background area, éwbe proper local thresholk value is chosen.
Thus we use two criteria to reconcile higher NCGsimall windows (Niblack) (see Tables 4b and 4c)
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including WBCs and few neighboring RBCs (bettermsegtation in foreground) and higher NCC in
global thresholding by Otsu (see Table 4a) to ahaining spurious spots in background.

Fig. 7.Binarization results using the algorithm of: a) Bemsb) Sauvola; c) Otsu; and d) Niblack.

Computer experiments with different samples antainconditions (see Fig. 7) show that Niblack
approach is the most reliable method to maintasjouiit components which is crucial in avoiding over
under segmentation. In the previous work [4] Otsesholding was used for binarization; howevers thi
method tends to result in overlapping objects #nattoo close to one another which in turn leadalse
results after segmentation. In our modified vergiorels are labeled as backgrounds pixels if they a
labeled as either background pixels in Niblackro©tsu and the remaining pixels are kept as foregto
pixels (objects). Using this merging process, wégaie the problem of extra small spurious regions
produced by the Niblack algorithm.

3.5.SIZE ESTIMATION

Binarization and some post-processing to enhaheequality of binary image is followed by
feature extraction which helps to differentiatefeliént particles in the image. A normal blood sampl
typically contains two major particles: RBC withnarmal size probability distribution function (PDF)
with average size around 6.0-§m and WBC with average size around 7:&8 including nucleus and

cytoplasm and being about 1-3 times bigger than nbemal and mature RBCs. We use size
characteristics as an effective factor to distisgubetween the two main types of cells. Granuloynetr
[38] can determine the size distribution of imadpgeots without explicitly segmenting each objecstfi
According to normal blood PDF and RBC to WBC ratlee maximum regional peak in pattern spectrum
diagram correlates to the number of RBCs with arepiable RBC radius size.

Granulometry uses structure elements which are Inobopically dilated to the maximum size and
applied to the image. The shape of structure elemepends on the type of objects under processing.
During the process granulometric density functisrdétermined. The granulometric algorithm starts by
applying an opening morphology along with definédicture element (SE). In normal blood smear
images, all available particles are approximatélgutar. Hence, we select (disk) shape as def&H) (
for granulometric algorithm. In an ideal output, @gect only one peak for a single complete citole,
the incomplete circular object shown in Fig. 8 proes local maxima. We call this undesirable eféact
edge fracture. We just observe that after applyiregedge detection and skeletonization algorithons t
real cell images which are typically not completeves the observed circular pieces are regarded as
a new objects surrounded between two ideal comptatdes. Consequently we can expect in
granulometric output at least two local regionadlge By this simple work, we find that blood smear
particles are not complete circular object anddlee always discrete components on curve tratechw
is another reason for undesirable local maxima.

Fig. 8.Granulometry over simple circle.
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Overall, applying granulometry to RBCs images ormal blood smear can be very reliable in
determination and estimating their size. But fon@imal samples with different shapes or with extra
overlapping between the particles granulometric@ggh may fail.

3.6. SEGMENTATION AND COUNTING ALGORITHM

Two sub-images containing individual WBCs indicatand RBCs are separated in order to count
peripheral cells. This is done in two main proceduexplained in detail in [13]. There are different
methods which are directly or indirectly used tpasate and segment objects in disjoint images asch
active contours and watershed. Typically watersiseshcorporated into the immersion and toboggan
methods [20]. The accuracy and efficiency of wdtedssegmentation over images is directly related to
the previous steps. In practice, a watershed dlgorivorks best for smooth convex objects that don’t
overlap too much. It cannot be an efficient appnoacall microscopic images with extra overlapping
which can happen for some diseases.

A set of 10 different blood smear test images withast variety of image characteristics from a
normal thin blood film till very degraded blurry age (see the sample table) were used to showhhat t
proposed framework is accurate and also is rolmrstidgraded images which are blurry and (or) noisy.
In Table 5 ten blood smear slides (numbered NQutjitd\N9) are denoised by bivariate wavelet approach
within our framework. The computed blood cell covesults are compared with manual counts of the
number of RBCs and WBCs (the differences betweenctimputed counts and the manual counts are
numbers in parenthesis). In the last four rows abl& 5, also the proficiency of the denoising appho
was tested by using different additive noise oweadges in two different noise variance values ah hig
(variance=150, mean=0) and medium (variance=30na@®devels.

In Table 6, we give confusion matrices (with norzed rows) of the framework when applied to
normal, moderately noisy and highly noisy blood ammages. In particular, for normal images, 90% of
known RBCs were classified as such, with this diasgion rate decreasing to 78% for moderatelysgoi
images, and then to 58% for highly noisy images.l#&sed on the confusion matrices with three ctasse
RBC, WBC and others composed of platelets and qgibssible existing parasites (in abnormal cases)
the proposed consecutive steps are reliable anaraeceven in presence of moderate and high level
noise yielding acceptable accuracy.

Table 5.Experimental results of ten different blood smeaages (numbered NO-N9). Counts for RBCs and WBCs aga @igm manual
counts, as well as determined by our frameworkguBivariate denoising. Values given in parenthesedtee differences between counts
computed and those obtained by a manual countffmegelues indicate an under count; positive valinelicate an over count).

e |mage Char acteristics Manual Count| Our framework
RBC| WBC RBC WBC
NO normal sample 104 1 98(-6) 1(0)
N1 without WBCs 75 0 66(-9) 0(0)
N2 blurred and overlapped 125 2 110(-15) 2(0)
N3 normal sample 105 3 99(-6) 3(0)
N4 Blurred 325 1 314(-11) 1(0)
N5 Blurred 66 2 62(-4) 2(0)
N6 numerous overlapping 90 2 76(-14) 2(0)
N7 WBCs touch RBCs 18 1 16(-2) 1(0)
NS WBCs touch RBCs 69 2 65(-4) 2(0)
N9 blurred,numerous overlaps,WBCs touch RBCs101 1 83(-18) 2(1)
N6 additive medium noise 90 2 77(-13) 3(1)
N9 additive medium noise 120 1 78(-42) 2(2)
N6 additive high noise 90 2 70(-20) 1(-1)
N9 additive high noise 120 1 81(-39) 5(4)
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Table 6.Confusion matrices for proposed framework (leftigiit) total over 10 regular (NO-N9); 6 with moderaoise
(N1, N2, N5, N6, N8, and N9); same 6 images witthimoise.

Assigned Assigned Assigned
Known | RBC | WBC | Other Known | RBC | WBC | Other Known | RBC | WBC | Other
RBC 0.9 0 0.1 RBC 0.78 0.05 0.17 RBC 0.58 0.02 0.21
WBC 0.08 0.87 0.05 WBC 0 1 0 WBC 0.5 0.5 0
Other | 031 0 0.69 Other | o.16 0 0.84 Other | 0.23 0 0.77

4. FUTURE WORK AND CHALLENGES

Automatic CBC (complete blood count) is a challeggoroblem. It involves classification of WBC
into five main categories such as basophils, epsitgy lymphocytes, monocytes and neutrophils, and
detection and categorization of pathologies suclresnias, leukaemias, lymphomas, cholera, malaria
and many others. As different WBC and pathologiey ime differentiated by shape, texture, color and
other visual cues advanced image processing andingalearning techniques need to be utilized tédbui
reliable classification systems. An important pesblto address is the separation of different WBCs
classes, as well as the identification of deforrRBL and WBC shapes with diseases such as malaria,
leukemia, anemia, etc. This will be accomplishemgigutting edge image segmentation techniques in
combination with advanced machine learning techesdor classification, with the goal of improvirtet
accuracy of CBC reports.

5. CONCLUSIONS

In this paper we discussed automatic processingeoanition of histopathological images of red
and white blood cells. An efficient algorithm faullfy automated detection and segmentation of blood
cells microscopic imagery has been presented. Tberithm is accurate and offers remarkable
segmentation accuracy. There are many challengingblgms in automatic processing of
histopathologies. The main problems include largaation of blood cells, occlusions, low quality of
images and difficulties in getting real data. Thpseblems will be addressed in the future work.
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