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MODELLING THE DATA RECORD OF A PATIENT WALK  
BY LANGRANGE-POLYNOMIAL METHOD  

Various options available in PSW footprint and walking characteristics measuring equipment [6], [7], 
give the user many aims in putting diagnosis. A Conclusion-Making Unit (CMU) that has been described in this 
paper supports the diagnosis automation procedures. Due to simplifying the CMU training process some affords 
in a field of the input record length reduction have been undertaken. The paper describes an analytical method of 
the data record description that allows converting discrete data samples into continuous function. This way a re-
digitalisation of the record can be done, where sampling period is matched with the walk length. This normaliza-
tion allows reducing the data record length used for fast training of the CMU.  

1. INTRODUCTION 

Medical experts use various methods [6], [7] and tools [2] allowing analyzes all mobile 
mechanisms of a patient body. The computer diagnostic equipment [5], [3] with a built-in conclu-
sion-making unit (CMU) is successfully used in many fields of medicine. One interesting problem 
that concerns the CMU training time reduction has been discussed in this paper.  

The data records being the analysis subject are collected by interface of Parotec System for 
Windows (PSW), the equipment described already in several works [6], [7], [2]. The data record is 
read by set of sensors installed in a shoe-insole [2]. The data available in this record is shown in 
various interfaces providing the user with many components of diagnosis.  One of the most valuable 
concerns the walking trajectory analysis. The measuring unit collects the source record of static and 
dynamic data (while standing and walking, respectively). The PSW device consists of:  

– a single-chip microcomputer measuring unit, reading a pressure distribution among sensors 
installed in the insole, as it is shown in the example interface in Fig. 1,   

– a PC software package used for reading the data from the controller and for the data record 
visualization.  

The user can put his first assumptions to the diagnosis, being a rough estimation of the walk 
abnormality, namely a class of the disease. After this elementary recognition the next diagnosis 
procedure concerns dynamic part of the data record. An abnormality of a time characteristic distri-
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bution during the walk cycle allows the PSW user finding reasons of the patient health troubles, 
underlying the disease nature.  

 

 
Fig.1. The example pressure distribution on a foot in a dynamic part of data. 

2. THE CONCLUSION MAKING UNIT 

The data extracted from the record can provide the users with several additions that need the 
automatic conclusion-making unit.  

The PSW interfaces allow:  
– analysis of body balance and mobile mechanisms,  
– time measures analysis in a cycle of walk or run,  
– recognition then monitoring complex neurological factors of the disease.  
Doubts concerning diagnosis are reasonable smaller when it is supported by knowledge of the 

disease, classifying the disease characteristic features, given by a current data record.  
The Conclusion Making Unit (CMU) allows comparing the selected part of the record with 

pattern images by filtering and extracting formulas [6], [7]. Very troublesome problem concerns 
number and quality of records used for neural network training.  

Our early experiments with neural networks proved that the computer interfaces like PSW 
make the medical experts many troubles in putting a proper diagnosis. What is more the CMU was 
unable to generalize the disease features recognition, in spite of very long lasting training process.  

The PSW data record consists of discrete pressure samples recorded on every sensor. The 
pressure values are measured on 24 sensors with sampling intervals defined by micro-controller 
internal clock. Although operator, in range of 100 to 200 Hz can select the sampling frequency of 
the data recorder, a random walking speed of the patient produces different lengths of the data 
record.  

The neural network training process efficiency depends on precise classification of the disease 
features, while the sampling frequency of the data recorder does not change the characteristic fea-
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tures of the disease. Anyhow grows density of the data record samples and the data sequence 
length.  

Various sampling frequencies of the sensor-signals reading are explainable when we want to 
distinguish different activities as running or walking. Not sufficient samples in data sequence for 
running means that a part of important data is excluded. Similarly when the sampling frequency for 
walking activity is to high a data record describes the disease with higher resolution then it is 
needed. Using to long data sequences for neural network training a time of this experiment grows 
without any reason.  

Statistically variable speed of a patient walk, with a constant clock period of the data control-
ler, does not allow unifying the measuring conditions for every disease and for every patient.  

A goal of the presented works was normalization of every data record that is used for the 
CMU training. 

3. THE POLYNOMIAL APPROACH TO THE PRESSURE SPECTRUM 
APPROXIMATION 

Let us assume that the controller-clocking unit is sampling pressure values of first five steps, 
50 times on every sensor of 24. It means that the data input vector contains:  

 lp = 24 * 50 = 1200 components,  (1) 

Each of these components contains 50 samples creating well-ordered set of values: 

 }50,...,2,1:{ == ixX i  (2) 

where: , are values of input variables controlling a set Yj of output variables.  5021 ... xxx <<<
The discrete values of pressure in each interval i for every sensor j: 

 24,...,2,1}50,...,2,1:{ === jifY ij   (3) 

Before the sampling period normalization of the input record will start, the discrete data set 
has to be converted into continuous expression. The transformation formulas are defined in a fol-
lowing manner: 

  (4) 
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The discrete pressure approximation procedures are found in several classes of algorithms: 
– polynomial interpolation methods,  
– quotients of polynomials - rational functions,  
– trigonometric interpolation,  
– spline interpolation. 
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The paper presents a polynomial interpolation method by means of Lagrange functions.  
The approximation algorithm experiments concern four data record classes: physiology, bun-

ion pathology, ischialgia, lateral sciatic neuralgia. For every data class the most representative data 
record (pattern) was selected.  

 

 

- discrete values, 
- discrete values ap-

proach by continue 
function 

Fig.2. The example function of pressure distribution on a sensor. 

The Lagrange interpolation [8] equation has been defined as:  

  (5) ∑
=

=
n

i
iin xpyxL

0

)()(

 where:  n – the polynomial degree, 
   yi – the polynomial value in i – node, 
   pi(x) – is an equation: 
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where: xi – concerns an i node. 
 
The calculation complexity of this interpolation algorithm expresses the equation O((n+1)2) 

[8], where n – is the polynomial degree. For 50 data nodes the interpolation calculations complexity 
is equal to O(2500) that is simple task for an average PC.  

When grows the polynomial degree the approximation quality seems to be better. Our ex-
periments proved that the degree of polynomial has to be selected in a special way.  

The simulation experiments we started from polynomial’s degree n = 49. The polynomial val-
ues in sampling nodes were calculated properly. Anyhow between nodes (x ∉ X) the calculations 
were very unstable, with unexplainable values of the data record (eg. values 1000 higher then 
maximal pressure on sensors). This non-stability is observed for polynomials of degree n ≥ 16. 
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Bellow this level the approximation procedures offer more satisfying characteristics of the pressure 
distribution functions. 

4. AN ERROR ANALYSIS OF THE INTERPOLATION METHOD 

The effectiveness of the interpolation measures have been supported by an error analysis. In 
classical approach to error analysis, in polynomial approximation methods, we assume that the 
functions being a subject of the interpolation procedure are differentiable in multiplication error 
equal to (n+1) [8], [9], [11].  

As in the presented subject the above condition is not available this criterion can not be used. 
That is why the absolute and relative errors-analysis is used for values in sampling nodes only. 
According to the literature [9], these fault formulas are defined as follows: 

the absolute error:  50,...,2,1)( =−= ixFfE iii  (7) 

the relative error:  50,...,2,1
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where: fi – concerns values in points xi ∈ X, 
F(xi) – is the approximation result (for xi ∈ X). 

 
Faults for single sensors are defined by following formulas: 

average absolute error:  
50
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average relative error: 
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maximal absolute error:  }50,...,2,1:{maxmax == iEE iij , (11) 

maximal relative error:  }50,...,2,1:{maxmax == iRERE iij , (12) 

where: j = 1, 2, …, 24. 
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The error analysis technology was used as the approximation effectiveness measures concern-
ing various degrees of polynomials. The best approximation results for values between nodes we 
obtained for polynomial degree equal to 10 (results presented in table 1).  

When grows the polynomial degree the approximation procedures become unstable at the end 
of the interpolation zone (Fig. 3, Fig. 4, Fig. 5 and Fig. 6). 

A mathematical literature calls this problem Phenomena of Runge (PR) [4]. Anyhow the in-
terpolation results closer to the central point between the nodes distance are satisfying even for 
higher polynomial degrees.  

Trying to eliminate the PR the traditional interpolation algorithm was used in three independ-
ent sub-intervals between nodes distances.  This approach is called multi-range interpolation algo-
rithm for sub-intervals [4]. 

The presented approach provides the user with simple approximation algorithms and satisfy-
ing results, where the calculation complexity grows not remarkable. 
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aver. relative err.1 aver. absolute err.2 max. relative err.3 max. absolute err.4Sensor 

number s10*
 s12 s14 s10 s12 s14 s10 s12 s14 s10 s12 s14 

1  0,60 1,01 2,99 1,61 1,87 1,34 6,48 16,87 104,66 12,99 21,04 21,19

2  1,16 13,26 32,01 0,68 2,62 2,60 25,07 306,89 812,68 4,53 28,63 51,19

3  1,92 5,69 5,91 1,55 2,11 1,30 79,97 241,34 252,48 14,4 21,81 21,23

4  0,72 2,02 5,37 0,94 1,10 1,62 22,35 76,285 214,22 9,75 13,59 24,47

5  2,41 2,77 3,35 0,64 0,45 0,61 82,29 105,53 118,57 5,03 4,60 7,50

6  0,17 0,33 6,08 0,04 0,07 0,80 1,06 4,34 121,21 0,25 0,92 10,18

7  2,09 0,47 2,99 0,55 0,14 0,46 51,59 15,48 116,81 3,56 0,97 7,35

8  0,46 8,27 14,66 0,05 0,30 0,46 9,67 166,17 434,81 0,21 3,34 5,65

9  0,07 0,09 0,12 0,00 0,00 0,00 1,19 0,94 1,21 0,05 0,11 0,077

10  4,21 2,37 3,27 0,67 0,37 0,44 108,09 75,10 71,94 5,40 3,75 4,96

11  1,26 1,26 0,99 0,24 0,25 0,22 32,19 33,62 22,93 1,71 2,61 3,58

12  0,10 0,09 0,17 0,02 0,02 0,05 0,55 1,05 1,49 0,161 0,35 0,50

13  0,67 1,91 1,65 0,44 0,78 0,64 17,77 56,02 35,72 4,30 10,02 6,79

14  0,65 0,10 2,57 0,32 0,09 1,15 23,00 2,31 43,87 3,54 0,72 17,09

15  1,41 0,24 0,87 0,47 0,12 0,65 43,46 8,58 27,25 4,46 1,05 11,76

16  4,29 2,21 1,07 0,58 0,25 0,19 159,73 90,80 45,94 4,90 2,32 2,44

17  0,10 0,89 0,34 0,15 0,48 0,21 1,39 23,00 9,64 1,18 4,85 2,59

18  2,53 2,08 2,33 0,42 0,39 0,92 106,47 91,61 104,51 3,85 4,14 16,72

19  1,05 0,36 1,03 0,50 0,21 0,89 37,50 13,96 37,07 4,01 2,17 10,07

20  0,94 0,41 4,78 0,39 0,34 3,32 34,58 14,95 180,54 3,35 2,52 41,34

21  0,08 3,31 2,60 0,07 0,16 0,35 2,11 123,12 115,14 0,32 1,99 5,02

22  0,51 0,06 0,831 0,22 0,17 0,38 10,82 0,75 26,99 1,50 1,68 3,75

23  0,37 0,27 0,32 0,19 0,13 0,27 9,16 7,58 10,6 1,66 1,01 5,25

24  1,08 2,11 0,56 0,42 0,70 0,18 38,28 83,19 23,74 3,35 6,62 1,58

sum   28,9   51,6   96,9   11,2   13,1   19,1  904,8 1 559,5 2 934,0   94,5  140,8  282,3

mean-
value 

1,2 2,15 4,04 0,47 0,55 0,8 37,7 64,98 122,25 3,94 5,87 11,76

Tab.1. Absolute error values for Lagrange polynomials of 10, 12 and 14 degrees 

 

                                                           
1 average relative error 
2 average absolute error 
3 maximal relative error 
4 maximal absolute error 
* polynomial degree 
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 The pressure distribution at 4 sensors 

Sensors 

 

Fig.3. The full range of approximation for polynomial 
degree n = 10. 

 
 

 The pressure distribution at 4 sensors
Sensors 

 

Fig.4. The full range of approximation by polynomial 
of degree n = 12. 

 

 The pressure distribution at 4 sensors 
Sensors

 

Fig.5. A zone interpolation with polynomial degree 3 
(external sub-zones – bold)  

The pressure distribution at 4 sensors
Sensors

 

Fig.6. Approximation with polynomial degree n = 14 
without sub-zones. 
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Fig.7 The error comparison for zone-interpolation (for n = 3 yellow)  and polynomial degree n = 14 (blue). 

Two extreme zones with Runge Phenomena have been approximated by low degree polyno-
mials (n = 3). The left sub-interval concerns samples from 1 to 10. The right sub-interval samples 
from 40 to 50. For the remaining (internal) part of the approximation range, belonging to an internal 
zone a higher degree of polynomials can be used. 

For zone-interpolation approach, in range of external sub-zones, the minimal error of ap-
proximation has been noticed for the polynomial degree n = 3 (Fig.7). For internal part of the ap-
proximation zone the best approximation results have been obtained for n = 14. 

5. CONCLUSIONS 

When grows the neural network complexity and its training process is not controlled properly, 
the network collects many not important details that cause the record recognition difficult or not 
possible.  

The experiments in clinics proved the CMU high ability of the disease recognition. The expert 
options combine the current data with groups of models the most relevant to the pathology.  

The CMU effectiveness highly depends on a good organization of neural network training 
process. The algorithm shown in the paper presents possibility of the data-record reduction. This 
way reduction of time and complexity of the CMU training operations is possible.  
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