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ON THE APPLICATION OF THE FORWARD AND BACKWARD 
DIFFUSION SCHEME FOR IMAGE ENHANCEMENT 

In this paper a novel approach to the problem of edge preserving smoothing is proposed and evaluated. 
The new algorithm is based on the combined forward and backward anisotropic diffusion with incorporated time 
dependent cooling process. This method is able to efficiently remove image noise, while preserving and 
enhancing its edges.  

1. ANISOTROPIC DIFFUSION 

Perona and Malik [1] formulate the anisotropic diffusion filter as a process that encourages 
intraregional smoothing, while inhibiting interregional denoising. The Perona-Malik (P-M) 
nonlinear diffusion equation is of the form [1-5]: 

 [ ,),,( I(x,y,t)tyxcI(x,y,t)
t
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∂
∂ ]  (1) 

where I(x,y,t) denotes the color image pixel at position (x,y), t refers to time or iteration step in the 
discrete case and c(x,y,t) is a monotonically decreasing conductivity function, which is dependent 
on the image gradient magnitude ( )(x,y,t)ftyxc I∇=),,(  such as: 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∇
−=

2

1

),,(
exp),,(

β
tyxI

tyxc ,          

12

2
),,(

1),,(

−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∇
+=

β
tyxI

tyxc  (

                                                          

2) 

which were introduced in the original paper of Perona and Malik [1]. The parameter β is a threshold 
parameter, which influences the anisotropic smoothing process. Using the notation g = ||∇I(x,y,t)||, 
s=g/β, where ||⋅|| denotes the vector norm, we obtain following formulas for the conductivity 
functions: c1(x,y,t)=exp (-s2), c2(x,y,t)=1/(1+s2). It is evident that the behavior of the anisotropic 
diffusion filter depends on the gradient threshold parameter β. To show the influence of β it is 
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helpful to define a flux function: Φ(x,y,t)=c(x,y,t) ||∇I(x,y,t)||. With the flux function defined above, 
Eq. 1 can be rewritten as ),,(),,( tyxtyxIt Φ∇=∂

∂ . The flux functions Φ1 and Φ2 corresponding to 
conduction coefficients c1 and c2 are shown in Fig. 1. 

As it is easy to notice in Fig. 1b, the flow increases with the gradient strength to reach a 
maximum and then decreases slowly to zero. This behavior implies that the diffusion process 
maintains homogenous regions since little smoothing flow is generated for low image gradients.  

In the same way, edges are preserved because the flow is small in regions where the image 
gradient is high. 

 

  
a)      b) 

Fig.1. Dependence of the conductivity functions c1 and c2 (a), and the respective flux functions Φ1 and Φ2 (b), on the 
value of the normalized image gradient s. 

  
Fig.2: Dependence of the conductivity functions on the iteration step and the image gradient g for the c1 and c2 

conductivity functions, (forward diffusion, β1=40, γ=0.8). 

2. DISCRETE IMPLEMENTATION 

Although not obvious from Eq. (1), the discrete implementation of the nonlinear anisotropic 
diffusion filter is straightforward. In one dimension, the gradient and divergence expressions reduce 
to derivatives:  
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Substituting discrete approximations for the derivatives and introducing the flow functions we get:  
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The conductivity values Błąd! Błąd!and  are easily computed by substituting the discrete 
approximation of the gradient :  
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Introducing the notation:  
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we obtain : 
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The 1-D discrete formulation of the diffusion process is straightforwardly extended to the 2-D case: 
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The filtering process consists of updating each pixel in the image by an amount equal to the 
flow contributed by its nearest neighbors, (we assume 4-neighborhood system, the extension to  
8-neighborhood is a trivial task), 

 ).(),,(),,( EWSNttyxIttyxI Φ+Φ+Φ+Φ⋅Δ+≈Δ+ . 

3. FORWARD-AND-BACKWARD DIFFUSION 

The conductance coefficients in the P-M process are chosen to be a decreasing function of the 
signal gradient. This operation selectively smoothes regions that do not contain large gradients. In 
the Forward-and-Backward diffusion (FAB), a different approach is taken. Its goal is to emphasize 
the extrema, if they indeed represent singularities and do not come as a result of noise. As we want 
to emphasize large gradients, we would like to move "mass" from the lower part of a "slope" 
upwards. This process can be viewed as moving back in time along the scale space, or reversing the 
diffusion process. Mathematically, we can change the sign of the conductance coefficient to 
negative: .0),,()],,,(),,([),,( >∇−∇=Ι∂

∂ tyxctyxItyxctyxt  However, we cannot simply use an 
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inverse linear diffusion process, because it is highly unstable. Three major problems associated with 
the linear backward diffusion process must be addressed: explosive instability, noise amplification 
and oscillations. 

One way to avoid instability explosion is to diminish the value of the inverse diffusion 
coefficient at high gradients. In this way, when the singularity exceeds a certain gradient threshold 
it does not continue to affect the process any longer. The diffusion process can be also terminated 
after a limited number of iterations. In order not to amplify noise, which after some pre-smoothing, 
can be regarded as having mainly medium to low gradients, the inverse diffusion force at low 
gradients should also be eliminated. The oscillations should be suppressed the moment they are 
introduced. For this, a forward diffusion force that smoothes low gradient regions can be introduced 
to the diffusion scheme. 

The result of this analysis is that two forces of diffusion working simultaneously on the signal 
are needed - one backward force (at medium gradients, where singularities are expected), and the 
other, forward one, used for stabilizing oscillations and reducing noise. These two forces can 
actually be combined to one coupled forward-and-backward diffusion force with a conductance 
coefficient possessing both positive and negative values. In [6-8] a conductivity function that 
controls the FAB diffusion process has been proposed  
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where g is an edge indicator (gradient magnitude or the value of the gradient convolved with the 
Gaussian smoothing operator), kf , kb, w are design parameters and α=kf / (2kb), (kf ≤ kb) controls the 
ratio between the forward and backward diffusion. The dependence of such a defined conductance 
coefficient on the value of the gradient indicator is shown in Fig. 4b. 

In the P-M equation, an "edge threshold" β is the sole parameter, the FAB process described 
in [6-8] is modelled by a parameter which regulates forward force kf, two parameters for the 
backward force (defined by kb and width w), and the relation between the strength of the backward 
and forward forces α. Essentially kf is the limit of gradients to be smoothed out and is similar in 
nature to the role of β parameter of the P-M diffusion equation, whereas the kb and w define the 
backward diffusion range. 

In this study we propose two more natural conduction coefficients directly based on the P-M 
approach: 
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The plots of the c1FAB and c2FAB diffusion coefficients are shown in Figs. 3, 4a. 
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a)       b) 

Fig.3. Dependence of the conductivity functions on the iteration number κ and the normalized image gradient s for the 
c1FAB (a) and c2FAB (b) conductivity functions, (forward and backward diffusion), for β1(1)=40, β2(1)=80 and γ=0.5. 

Note, that because of low γ=0.5 already in the second iteration, the conductivity functions have negative values for large 
enough gradients.  

In the diffusion process smoothing is performed when the conductivity function is positive 
and sharpening takes place for negative conduction coefficient values.  

4. COOLING DOWN OF THE DIFFUSION PROCESS 

Various modifications of the original diffusion scheme were attempted in order to overcome 
stability problems. Yet, most schemes still converge to a trivial solution (the average value of the 
image gray values) and therefore require the implementation of an appropriate stopping mechanism 
in practical image processing. In case of images contaminated by Gaussian noise, a common way of 
denoising is the usage of nonlinear cooling, which depends on the gradient, where large gradients 
cool faster and are preserved. In this study four simple time-dependent conduction coefficients were 
used:  
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where g=||∇I(x,y,t)|| is the L1 or L2 norm of the color image vector in the RGB space, 
( ]1,0,)()1( ∈⋅=+ γγββ tt ii , βi(1) is the starting parameter, i=1,2, β1(t)<β2(t). 

The scheme depends only on two (in case of forward or backward diffusion) or three (in case 
of FAB diffusion) parameters: initial values of starting βi parameters and the cooling rate γ. Setting 
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γ to 1 means, that there is no cooling in the system. As γ decreases, the cooling is faster, less noise 
is being filtered but edges are better preserved. Figures 3a and 3b illustrate the dependence of 
diffusion coefficients c1(s,t) and c2(s,t) on iteration step t. The behavior of the diffusion coefficients 

(s,t) and (s,t) are compared in Fig. 3 and 4a. 
FAB

c1 FAB
c2

If the cooling coefficient γ is lower than 1, then the gradient threshold β(t) decreases with 
time, allowing lower and lower gradients to take part in the smoothing process. As time advances, 
only smoother and smoother regions are being filtered, whereas large gradients can get enhanced 
due to local inverse diffusion. The scheme converges to a steady state for β→0, which means that 
no diffusion is taking place.  

5. EXPERIMENTATIONS AND RESULTS 

In this paper a novel approach to the problem of edge preserving smoothing is proposed. The 
experiments revealed that better results of noise suppression using the FAB scheme were achieved 
using the conductivity function c2 from the original P-M approach (7). This is due to the shape of 
the coupled forward and backward conductivity shown in Fig. 3b, which allows more effective 
image sharpening. 

The efficiency of the proposed technique and especially its excellent ability to filter out noise 
and sharpen the image edges is presented in Figs. 5 and 6, where the noisy images are enhanced 
using the new FAB anisotropic techniques. The results confirm good performance of the new 
method, which could be used for the enhancement of images in different areas of medical image 
processing.  

  
 (a) (b) 

Fig.4. a) Comparison of the shape of the proposed forward and backward diffusion conductivity functions, b) the 
forward and backward conductivity function proposed in [6-8]. 
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Fig.5. Illustration of the new combined forward and backward anisotropic diffusion scheme applied to gray scale 
images. To the left: noisy MRI test images, to the right images enhanced with the forward and backward diffusion, (5 

iterations, conductivity function c2). 
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Fig.6. Effectiveness of the new coupled forward and backward anisotropic diffusion scheme. Left column: color, noisy 
biomedical images, to the right images enhanced with the new FAB anisotropic diffusion scheme, (10 iterations, 

conductivity function c1). 
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