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ANALYSIS OF DYNAMICS OF GENE EXSPRESSION  
USING SINGULAR VALUE DECOMPOSITION 

Recently, data on multiple gene expression at sequential time points were analyzed, using Singular Value 
Decomposition (SVD) as a means to capture dominant trends, called characteristic modes, followed by fitting of 
a linear discrete-time dynamical model in which the expression values at a given time point are linear 
combinations of the values at a previous time point. We attempt to address several aspects of the method. To 
obtain the model we formulate a nonlinear optimization problem and present how to solve it numerically using 
standard MATLAB procedures. We use publicly available data to test the approach. Then, we investigate the 
sensitivity of the method to missing measurements and its possibilities to reconstruct missing data. Summarizing 
we point out that approximation of multiple gene expression data preceded by SVD provides some insight into 
the dynamics but may also lead to unexpected difficulties. 

1. INTRODUCTION 

Multiple gene expression methods are gaining maturity as a tool to investigate dynamical 
changes in the genomes. The principal aim is to capture the dependencies between expressions of 
different genes. This latter was attempted even before introduction of DNA, in several different 
ways, depending on particular biological systems with corresponding different time scales. Time 
sequences of chromosomal aberrations were reconstructed in tumor systems, dating from the paper 
[14] on colon cancer and continuing with a recent series of papers on phylogenetic models of 
tumors (e.g.,[10]). The techniques employed there belong to the mainstream of phylogenetic 
reconstruction, with time flow represented by distances based on probabilistic models of evolution. 

Recently, data on multiple gene expression at sequential time points were analyzed, using 
Singular Value Decomposition (SVD) as a means to capture dominant trends, followed by fitting of 
a linear time-discrete dynamical system of the form: )()( tMYttY =Δ+  to the dominant trend 
characteristics [7], [8]. This approach can be, arguably, employed for two purposes: First, the short-
time changes in the components of vector Y(t): )()( tYIMY −=)()()( tYttYt −Δ+=Δ  can be 
expressed using matrix M. Therefore, the off-diagonal entries of M reflect linear approximations of 
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the influence of some components of vector Y(t) on changes of other components. However, this 
kind of sensitivity analysis is not as straightforward as it might seem, since the components of Y(t) 
are themselves combinations of expressions of a number of genes. Second, dynamical system 
representation may help reconstruct missing measurements at some time points, by providing 
interpolation between time points at which measurements exist. 

In the paper, we attempt to address several aspects of the method presented in [7], [8]. We 
slightly reformulate the statement of the method to make it more amenable to mathematical 
analysis. Then, we investigate the sensitivity of the method to missing measurements and its 
possibilities to reconstruct missing data. We use the same data, for comparison purposes. 

2. ALGORITHM DESCRIPTION 

2.1. SINGULAR VALUE DECOMPOSITION (SVD) 

The singular value decomposition of any n  ×  m matrix A has the form (e.g.[6]) 

  (1) TUSVA =

where U is an n × n orthonormal matrix, whose columns are called the left singular vectors of A , 
and V is an m × m orthonormal matrix, whose columns are called the right singular vectors of A . 
For n>m matrix S has the following structure  
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The diagonal elements of matrix S are, as a convention, listed in a descending order 
 and called the singular values of A .  0...21 ≥≥≥ msss

Properties of the SVD matrices: 
1. Singular values of rectangular matrix A are equal to square root of eigenvalues λ1, 

λ2,..., λm of matrix ATA. 
2. Rank of matrix A is equal to the number r of positive singular values:  

rank(A)= r,  r ≤ m. 
3. Euclidean norm of A is equal to the largest singular value: ||A||2 = s1. 
4. First r columns of matrix U form an orthonormal basis for the space spanned by the 

columns of A. 
5. First r columns of matrix V form an orthonormal basis for the space spanned by the 

rows of A . 
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2.2. BIOLOGICAL DATA 

The SVD can be used to analyze time dynamics of gene expression data [8]. Each row of 
matrix of gene expression A corresponds to a different gene and each column corresponds to a 
different time point at which expression data were measured. The entries of the matrix A contain 
gene's relative logarithm expression ratios at discrete time points. For up-regulated genes the ratios 
are positive while for down-regulated genes they are negative. Since, in most applications, the 
number of samples or time points assayed is much smaller than the number of genes investigated, 
then only the case n>m is considered. 

In the publication [7] by Holter et al., before applying the SVD, data were regularized using 
polishing. After polishing, the rows and columns of the matrix have mean values equal to 0. 
Because of polishing the rank of matrix A is equal to r ≤ m -1. Depending on circumstances, 
polishing can be desirable or not. 

2.3. CHARACTERISTIC MODES 

Let us denote by Xi  the upper r rows of matrix SVT. The orthogonal vectors Xi= sivi
T, i=1,...,r 

are called the characteristic modes associated with matrix A. The time changes of the jth gene, 
included in the row Aj of matrix A, can be obtained as linear combinations of the characteristic 
modes . The coefficients of the combination are the corresponding entries of matrix 

U. Usually not all characteristic modes are needed to reconstruct gene expression patterns with a 
reasonable accuracy (

∑ =
=

r

i ijij XUA
1

[11], [2], [7]). We may use a truncated expression:  rlXUA l

i ijij ≤≈∑ =
,

1

The contribution of modes to the gene pattern decreases from the higher order to the lower 
order modes. The singular values, which represent the magnitudes of the corresponding modes, can 
be used as measures of relative significance of each characteristic mode in terms of the fraction of 
overall expression that it captures  
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There are several heuristic methods to estimate the number l of the most significant characteristic 
modes ([5],[9]). One of the simplest is to retain just enough modes to capture large percentage of 
overall expression. Usually values of 70-90% are proposed. The other procedure is to exclude 
characteristic modes such that the fraction of expression pi they capture is less than (70/r)%. 
Different method is examination of so-called scree plots for si

2 or log si
2. 

2.4. DYNAMIC MODEL FOR CHARACTERISTIC MODES 

Since characteristic modes are function of time, we can try, following approach from [8], to 
find a discrete-time dynamical model of changes of the modes. We assume the simplest linear 
model in which the expression values at a given time are linear combinations of the values at a pre-
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vious time. Let us denote by Y(tj) the expression level of all characteristic modes at time points tj, 
when gene expression was measured. Matrix of characteristic modes can now be rewritten as: 

 and the dynamical model can be written in the form of a linear equation:  [ )(),...,(),( 21 mtYtYtYX = ]

 )()( tMYttY =Δ+  (3) 

where M is a q × q translation matrix (q ≤ m) and Δt time step for the dynamical model. For equally 
spaced measurements Δt can be found from the expression Δt =ti+1-ti and ti =i*Δt . For unequally 
spaced measurements Δt  is defined as maximal time interval such that each measurement time is an 
integer multiple of Δt , i.e., ti = ni*Δt . 

Since, as mentioned earlier, time-series data often can be represented by the most significant 
modes only and a part of characteristic modes can be excluded, we can try to build reduced order 
model taking into account only small number of variables. In this case the dimension of vector Y(t) 
is q=l  but the form of the dynamical model (3) is not changed. 

To obtain the model we find matrix M based on the knowledge of temporal patterns of 
characteristic modes. The optimization problem as stated in [8] consists of minimization of the 
performance index of the form: 
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where Z(t) is a time variable described by linear discrete equation: , 
with initial condition Z(t1)=Y(t1). Since the measurements Y(tj) are given, the problem 

consists of finding the q2 entries of matrix M, which minimize J. In general this minimization 
problem is nonlinear. 

)())( 11 tYMtktZ k=Δ+

mnk ,...2,1=

2.5. METHODS OF SOLUTION 

For equally spaced measurements and q=r, the solution of the problem leads to the solution of 
a linear system of algebraic equations. 

 MYY ~~=  (5) 

where Y~  is a square r2 × r2 matrix and M~ is a vector containing transposed rows of matrix M. 
Solving the equation one obtains optimal elements of matrix M. Assuming that matrix Y~ is 
nonsingular, the equation has one unique solution and the value of the index (4) is equal to 0.  

In the case of equally spaced measurements and  q< r optimization problem may be brought 
to the solution of the equation similar to (5), but now matrix Y~ is a rq ×  q2 rectangular matrix. The 
resulting translation matrix M is the solution in the least squares sense to the overdetermined system 
of equations of type (5). Obtained fitting is not ideal.  
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For unequally spaced measurements and the general case q ≤ r, it is necessary to minimize the 
goodness of fit index J, as defined above. In [8] the authors used simulated annealing, while we use 
a standard Gauss-Newton algorithm (see [4] and references therein for details) as provided in 
Matlab, with very good results. The problem is strongly nonlinear and in general very hard to solve, 
especially for meaningful differences in measurements time intervals. Since the applied 
optimization algorithm is very sensitive to the choice of the initial guess of the solution, we use a 
two-step optimization. In most cases appropriate tuning of parameters of optimization procedures is 
required to obtain a precise solution. 

3. RESULTS 

To illustrate the considerations we used publicly available data on yeast cdc-15 synchronized 
cell cycle, described in [13]. In a yeast culture synchronized by cdc-15 over 6000 genes were 
monitored over approximately 2.5 cell cycle periods. Almost 800 of them were classified to be cell 
cycle regulated. We chose data set consisting of 12 measurements at 20 minute intervals, beginning 
at t1=10 minutes. The analysis consists of three parts. In Part 1 we built a dynamical model for the 
original data. Since the measurements are equally spaced in time the analysis leads to solution of a 
linear system of algebraic equations. In Parts 2 and 3 we deleted portions of the data to test the 
reconstruction properties of dynamical system fitting. In Part 2 we deleted two columns (times 
t=70,150), and in Part 3, 6 columns (times t=70,110,130, 170,190,210), of the data matrix obtaining 
two modified data sets with unequally spaced measurements. Estimation of the translation matrix in 
these cases requires solving a nonlinear optimization problem as described earlier. 

Analysis of singular values (si) and coefficients of relative significance (pi) of characteristic 
modes in each case reveals that two first characteristic modes capture roughly 70% of the overall 
variability of the expression. It means that the temporal pattern of gene expression can be described 
by the use of two characteristic modes with reasonable accuracy. 

For original data the solution matrix M is unique The dynamical model provides an exact 
reconstruction of the characteristic modes. In Figure 1 characteristic modes of first two data sets are 
presented. It easy to notice that the small distortion of the data, i.e., deleting two columns, 
equivalent to 16% missing data, did not change shapes of the original characteristic modes. Using 
similar procedures as in [15] and [1] the dynamical model can be used to recover missing data with 
reasonable fidelity. Figure 3 and Figure 5 show reconstruction of characteristic modes with the use 
of the full dynamical model (q=r). For both distorted data sets the reconstruction at the retained 
measurement points is very precise. It means that optimization procedure provides accurate 
solutions. However, inspection of Figure 5 reveals that for the strongly distorted data set the values 
of the characteristic modes at retained time points are conserved (compared to the original data), but 
this time the dynamical model can not be used to reconstruct the characteristic modes at deleted 
time points. The obtained dynamical model is unstable, i.e., model variables are oscillatory with 
growing amplitudes, although at the measurement points the values are very close to the values of 
characteristic modes. 

As shown in Figures 2, 4 and 6, which present reconstruction of the first two characteristic 
modes for reduced dynamical models in all three cases the main features of expression patterns are 
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reproduced quite well. It means that influence of the high order modes on dominant ones is weak 
and dominant modes could be reconstructed basing on a reduced order model. 

4. DISCUSSION 

The present note is concerned with the SVD representation of time-dependent multiple gene 
expression data and their approximation by linear dynamical systems, following the from [7], [8] 
and using the same data that were originally used by these authors. SVD allows to reconstruct the 
data exactly, using the complete set of characteristic modes, or approximately, using a subset of 
dominant  modes, whether the data are  provided at equally or  unequally spaced time points. In this 
way, the time pattern in the data can be represented by a small number of principal constituents. 
 

 

Fig.1. Characteristic modes for the original data (stars) and for the first modified data set  

 
Fig.2. Reconstruction of the first two characteristic modes for original data. The dots correspond to characteristic 

modes, the crosses correspond to reconstructed variables basing on the reduced dynamical model of order 2. 
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Fig.3. Reconstruction of the characteristic modes for the first modified data set. Dots correspond to the characteristic 
modes, crosses correspond to the reconstructed characteristic modes (full dynamical model), circles show  

approximation of the temporal pattern resulting from the dynamical model. 

 

Fig.4. Reconstruction of the first two characteristic modes for the first modified data set. Dots correspond to the 
characteristic modes, crosses correspond to the reconstructed modes (the second order dynamical model), 

circles show approximation of the temporal pattern resulting from running the model for each time t=n*Δt . 
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Fig.5. Reconstruction of characteristic modes for the second modified data set. Dots correspond to the characteristic 

modes for the data set, crosses correspond to the reconstructed characteristic modes based on the full dynamical 
model, circles show approximation of the temporal pattern resulting from the dynamical model for each time 

t= n*Δt , stars represent temporal pattern of characteristic modes of original data set. 

 
Fig.6. Reconstruction of the first two characteristic modes for the second modified data set. Dots correspond to  

characteristic modes, crosses correspond to the reconstructed variables based on the second order dynamical 
model, circles show approximation of the temporal pattern resulting from the model for each time t= n*Δt, 

stars represent temporal pattern of characteristic modes of original data set. 

However, this decomposition does not allow prediction of future trends or reconstruction of 
gene expression at time points at which measurements were not carried out. These tasks can be 
accomplished using an approximation of the modes by a dynamical system and then either 
extrapolating the data by running the system for times beyond the existing data points or 
interpolating by running it for times between the data points. 

Extrapolation of the data should be approached with much caution, particularly if 
preprocessing is carried out. Indeed, we demonstrated in [12] that using the procedure called 
polishing in [7], [8] may lead to serious distortions of dynamics of a linear model of the 
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characteristic modes. Polishing causes the powers of the estimated translation matrix M to become 
periodic with period m, yielding a dynamical system with period mΔt. This might have a 
justification if the underlying biological process is by its nature periodic, as in the data we used in 
this paper. However, in general, polishing is not advisable when the model is to be used for 
prediction purposes. 

As evident from our numerical experiments, approximation by a linear model does not 
necessarily lead to correct reconstruction of missing data. In our experiment, we deliberately 
removed data points and found that the linear dynamical system, while accurately fitting the 
existing observations, may provide very inadequate interpolations at the missing data points. If the 
data are polished, then system of the maximum order (equal to the number of measurements minus 
1), becomes unstable, overshooting between the existing data point (Figure 5). It is interesting that 
this phenomenon can be alleviated by reducing the order of the system (Figure 6). 

Summarizing, approximation of multiple gene expression data preceded by SVD provides 
some insight into the dynamics but may also lead to unexpected difficulties. Substantial numerical 
and mathematical effort will be needed to understand these problems in a satisfactory manner. 
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