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The paper is concerned with development of optimal treatment protocols that take into account both 
action of several drugs and the evolution of drug resistance. It is a result of analysis of evolution of drug 
resistance in cancer population but presented methodology can be applied in any case involving drug resistance 
stemming from gene amplification. First, a biological background is given. In subsequent sections of the paper, 
the developed technique is presented and some early analytical results, which form a basis for more precise 
modeling, are shown. Afterwards, the model description is transformed into a vector integro-differential 
equation, which makes it possible to define necessary conditions of optimal solution to the minimization 
problem arising from the search for the optimal treatment. Finally, some remarks on the model applicability are 
presented.  

1. INTRODUCTION 

We present a system of models of cancer chemotherapy based on a stochastic approach to 
evolution of cancer cells. 

Despite a long history of mathematical modeling of cancer chemotherapy its practical 
application to development of chemotherapy protocols has been arguably negligible (with minor 
exceptions). However, one cannot underestimate its importance in the development of ideas of 
chemotherapy scheduling, multidrug protocols, and recruitment.  

Two issues addressed below have not been studied in one model so far, due to their 
mathematical complexity, and no successful approach to take into account both of them is known to 
authors of this paper. These issues are: the dynamics of emergence of resistance of cancer cells to 
chemotherapy stemming from gene amplification and multidrug chemotherapy protocols. 

 Asymptotic analysis of the models results in some understanding of their dynamics and 
reveals their unique features. This is the first step towards appropriate mathematical modeling of the 
dynamics of drug resistance and/or metastasis, as well as optimal treatment protocols.  

A factor that can have a strong influence on the evolution of drug resistance of cancer cells is 
gene amplification. This process includes an increase in the number of copies of a gene coding for a 
protein that supports either removal or metabolization of the drug. The more copies of the gene 
present, the more resistant the cell, in the sense that it can survive under higher concentrations of 
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the drug. Increase of drug resistance by gene amplification has been observed in numerous 
experiments with in vivo and cultured cell populations (see e.g. [4] and [10]). In addition, it has 
been established that, at least in some experimental systems, tumor cells may increase the number 
of copies of an oncogene in response to unfavorable environment [3].  

Mathematical modeling of gene amplification has provided good fits to experimental data  
[1, 2, 3, 4]. For example, models with gene amplification predict the observed pattern of gradual 
loss of resistance in cancer cells placed in a non-toxic medium. The multistage stepwise model of 
gene amplification or, more generally, of transformations of cancer cells, leads to new mathematical 
problems and results in novel dynamic properties of the systems involved. These problems were 
first studied mathematically in [3] for the time-discrete models and in [4] for the time-continuous 
models. In this paper, we stress the same aspect of drug resistance as Harnevo and Agur [2]. 
Therefore, we consider models based on amplification of the resistance gene up to a very large 
number of copies. Our approach is to study basic mathematical properties of the models, in hope 
they will be of help in understanding the control problem. 

The motivation behind it is that most of existing forms of therapy consist in using several 
drugs, instead of a single one. Then, modeling should take into account increasing drug resistance 
to each of the used chemotherapeutic agents. 

2. PROBLEM FORMULATION 

Let us consider the case of simultaneously using two types of drugs. The methodology 
presented below makes it possible to address also more complex protocols, however, for the sake of 
clarity, only two drugs are taken into account in the considerations. 

Let us assume the simplest case, in which the resistance of the cells means that they are 
insensitive to drug's action, and there are no differences between parameters of cells of different 
type. Then, we could distinguish four different subpopulations of cells: type 0, which is sensitive to 
both drugs, type 1 and type 2, sensitive only to first and second agent, respectively, and type i ≥ 3 
that is resistant to both drugs. The second hypothesis for the model proposed at the beginning of 
this section has to be modified in the following way: 

A cell of type i = 0 may mutate in a short time interval (t, t+dt) into a type 1 cell with 
probability α01 dt + o(dt), into a type 2 cell with probability α02 dt + o(dt) or into a type 3 cell with 
probability α03 dt + o(dt). 

Each cell of type i = 1 or i = 2 may mutate in a short time interval (t, t+dt) into a type 3 cell 
with probability α13 dt + o(dt) and α23 dt + o(dt) respectively, or into a type 0 cell with probability 
d10 dt + o(dt) and d20 dt + o(dt), respectively  

A cell of type i = 3 may mutate in a short time interval (t, t+dt) into a type 0, 1 or 2 cell with 
probability d30 dt + o(dt), d31 dt + o(dt) and d32 dt + o(dt), respectively, or into a type 4 cell with 
probability b dt + o(dt).  

A cell of type i ≥ 4 may mutate in a short time interval (t, t+dt) into a type i+1 cell with 
probability b dt + o(dt) and into type i−1 cell with probability d dt + o(dt)., where αιϕ is several 
orders of magnitude smaller than b and d. 

The chemotherapeutic agent affects cells of different types differently. It is assumed that its 
action results in fraction ui of ineffective divisions in cells of type i (hence 0 ≤ ui ≤ 1). 
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If we denote by Ni(t) the expected number of cells of type i at time t, we obtain the following 
infinite system of differential equations: 
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 0 ≤ ui(t) ≤ 1 (2) 

where β1, β2 are efficiency factors and β1+β2=2. 
Several control problems arising in all these cases may be addressed basing on the model. 

One of them is establishing constant control values ui (in that case it leads to determination of 
feedback parameters) that stabilizes the infinite dimensional system. In biological terms, it refers to 
calculating constant doses of chemotherapeutic agents that suppress growth of the resistant 
subpopulation. However, the constant treatment protocol, which guarantees decay of the cancer 
population after sufficiently long time, is not realistic. Most of all, it does not take into account the 
cumulated negative effect of the drug upon normal tissues. To make the solution more realistic, it is 
justifiable to solve the optimal control, which minimizes the performance index: 
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The idea on which such optimization is based is to minimize the resistant cancer 
subpopulation at the end of therapy with simultaneous minimization of negative cumulative effect 
of the drugs represented by the integral component. 
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3. DECOMPOSITION OF THE MODEL 

The proposed methodology consists in decomposing the model into two parts as shown on 
Fig.1. The first one, is bilinear and only that one is directly affected by the drug. The second 
subsystem is infinite dimensional, but linear, with tridiagonal system matrix, and does not include 
terms containing control variables u(t). 

Applying the same line of reasoning as in our works devoted to modeling of a single drug 
chemotherapy [5], [8], [9], relations describing dynamical behaviour of the infinite dimensional 
subsystem from Fig. 1 can be derived. 

Let us first assume that there is no influx of new  cells to the second subsystem and the 
initial condition is given by Ni(0) = δi4 (Kronecker delta), i.e. N4(0) = 1, Ni(0) = 0 for i ≠ 4. 
Although this assumption would be very hard to justify biologically, it is needed only for some 
mathematical discussion and after that it will not be needed. Therefore, it does not introduce any 
additional constraints to applicability of the model 

Then, the following relations hold true: 
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where N4(s) and NΣ(s) are Laplace transforms of N4(t) and ∑
≥4

)(
i

i tN , respectively. These formulae 

describe behavior of the second subsystem, when treated as an autonomous model. After calculating 
inverse Laplace transform the following results are obtained: 
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Fig.1. System decomposition 
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where I1(t) – modified Bessel function of the 1st order. 
Using an asymptotic expansion of (7) it has been found [7] that the solution starting from 

N4(0) = 1, Ni(0) = 0, i > 4 decays exponentially to zero, as t → ∞: 

 d > b,  (8) 

 λ>− bd . (9) 

If λ is considered the only parameter affected by control, this means that unless somehow 
accessed by cytostatics, the resistant subpopulation may maintain itself even in the subcritical case. 

4. ANALYSIS OF THE COMPLETE MODEL 

Using standard control theory techniques it can be easily proved that the following relation 
holds true: 
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The inverse Laplace transform of this function, needed in further analysis, is given by 
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Let us now assume the initial conditions Ni(0) = 0 for i ≥ 1. The assumption is justified since 
at the beginning of chemotherapy all cancer cells belong to the sensitive subpopulation. Moreover, 
the same method can also be applied to other cases as well if only finite number of non-zero initial 
conditions is assumed. Then, the model can be transformed into the following set of equations  
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The necessary conditions for optimal control are given by 
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 pi(T) = 1, i = 1,2,3,4. (20) 

Taking into account the constraints (2), it can be easily noticed that, in order to satisfy (15), 
the optimal control must be bang-bang one. Hence, the problem is now reduced to finding optimal 
number of switches and optimal switching times. 
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5. CONCLUSIONS 

This paper is concerned with an infinite dimensional bilinear model of dynamical systems 
representing evolution of resistance to two different drugs in chemotherapy. Basing on model 
decomposition, it is possible to analyze analytically some of the dynamical properties of the model. 
The transformation of system description into one integro-differential equation allows solving an 
optimal control problem with the performance index defined in l1 space of summable sequences. 

Until now, the treatment protocols have been designed mainly on the basis of experimental 
results and general knowledge about drug activity. However, there exists no general mathematical 
approach, which would help to explain obtained results or design treatment in chemotherapy. 
Results of this work may be used to show desired form of optimal treatment protocol and give 
certain hints to its development. It can be also utilized in qualitative analysis of chosen protocol. 
Moreover, presented method can be also used in other biomedical applications, where there arises a 
problem of drug resistance caused by gene amplification. 
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