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MATHEMATICAL MODELLING OF UK RUBELLA  
VACCINATION PROGRAMS 

In this article we discuss mathematical modelling of vaccination programs for rubella in the UK. We 
briefly discuss rubella before outlining the underlying mathematical model. Age-structured serological data is 
used to estimate the force of infection in the absence of vaccination and hence the mixing matrix. Homogeneous, 
proportional and symmetric mixing are considered. The estimated mixing matrix is used to evaluate the basic 
reproduction number R0 and minimum elimination vaccination programs using one stage and two stage 
vaccination strategies. 

1. INTRODUCTION 

Rubella is a mild febrile disease with a diffuse punctuate and produces a rash which has 
characteristics inbetween those of a macula and a papule. The rash may resemble that of measles or 
scarlet fever. However up to half the infections occur without evident rash. A diminution of the 
number of leucocytes normally present in blood is common and thrombocytopenia, a reduction in 
the number of platelets present in blood can occur with rare haemorrhaging [4,10]. Encephalitis can 
happen rarely. The most important aspect of rubella is its ability to produce abnormalities in the 
developing fetus. Congenital rubella syndrome (C.R.S.) occurs in at least 25% of infants born to 
women who acquire rubella during the first trimester of pregnancy. C.R.S. can have unpleasant side 
effects such as blindness or deafness in the child. In this paper we shall use mathematical models to 
evaluate rubella vaccination programs. We are particularly interested in one stage and two stage 
vaccination programs which vaccinate a given proportion of susceptibles at one or two fixed ages 
respectively. 
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2. MATHEMATICAL MODEL 

The basic mathematical model is that of Anderson and May [1,2], Dietz and Schenzle [5] and 
Greenhalgh and Dietz [8]. We are interested here in finding the impact that one and two stage 
vaccination programs would have and in particular the minimum proportions of susceptibles who 
must be vaccinated at different ages in order to eliminate rubella in the UK. We are going to 
investigate the effect of different mixing assumptions, in particular homogeneous, proportional and 
symmetric mixing. We should also bear in mind that vaccination policies can have serious 
implications as far as the overall incidence of C.R.S. is concerned (Anderson and May, [1,3]). So 
we must take great care in evaluating the effects of these vaccination strategies. 

The population is divided into classes of susceptible, infected and immune individuals. Every 
individual starts off susceptible, at some stage catches the disease and after a short infectious period 
becomes permanently immune. Age-structured partial differential equations are used to model the 
spread of the disease. x(a,t) denotes the density with respect to age of the number of susceptible 
individuals at time t. Hence the absolute number of susceptibles between ages A1 and A2 at time t is 
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y(t,a,c) is the density with respect to age a, and duration of infection c, of the number of infected 
individuals at time t.  

 ∫ ∫
2

1

2

1

),,(
A

A

c

c
dadccaty  

Thus is the number of infecteds at time t who are aged between A1 and A2 and have durations 
of infection between c1 and c2. 

The rate at which a susceptible of age a makes potentially infectious contacts (in other words 
a contact which if between a susceptible and an infected individual would cause infection) is β(a,a’) 
= kb(a,a’)/N. N is the total population size and k is a normalised contact rate. The per capita rate of 
acquisition of infection of a single susceptible individual of age a at time t is called the force of 
infection and is given by  
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The spread of the disease is described by the following partial differential equations (Dietz 
and Schenzle, [5]) 
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where x(t,0) = ν, y(t,0,c) = 0 and y(t,a,0) = λ(t,a)x(t,a). ν is the (constant) total birth rate, φ(a) is the 
age-dependent vaccination rate, γ(c) is the rate at which infected individuals who have been infected 
for time c enter the immune class and μ(a) is the age-dependent death rate.  

The population is divided into n disjoint age classes I1, I2, … In and for a∈Ii, a’∈Ij , β(a,a’) = 
βij. The matrix βij is called the who-acquires-infection-from-whom, WAIFW, matrix. , the 
force of infection in the absence of vaccination, is estimated from the age-serological profile using 
the non-parametric maximum likelihood method given in Keiding [9]. As, at least prior to the start 
of vaccination, rubella is a disease of childhood, there are a much greater number of observed cases 
at relatively small ages (i.e. 0-5 years) than larger ones (i.e. adult cases). This fact means that if we 
use a constant kernel smoothing bandwidth then the quantities such as the estimated force of 
infection are much more reliable at smaller ages than larger ones. We ensure that our estimates are 
more equally reliable across the whole age range by using a variable smoothing bandwidth which is 
small at small ages and large at large ages. Following Keiding [9] we use the Epanechnikov kernel, 
but use a truncated Epanechnikov kernel at the ends of the age range.  

)(ˆ
0 aλ

Once  has been estimated it is then used with the equilibrium versions of equations (1) and 

(2) to estimate βij by . However we have n linear equations in n2 unknowns and need to make 
some assumptions on (βij) to reduce the number of unknowns to n. For a mixing assumption to be 
feasible we must have  for all i,j. In this paper we shall consider homogeneous mixing (βij 
=β for i,j = 1,2, … n), proportional mixing (βij =pipj for i,j = 1,2, … n) and symmetric mixing (βij 
=βji for i,j = 1,2, … n). 
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 AGE SEROPO- TESTED  
 (YEARS) SITIVE 

 AGE SEROPO-  TESTED 
 (YEARS) SITIVE 

 1 25 206 
 2 25 145 
 3 31 168 
 4 54 188 
 5 92 218 
 6 98 194 
 7 86 164 
 8 91 145 
 9 134 180 
 10 108 160 
 11 108 148 
 12 145 178 
 13 137 176 
 14 139 165 
 15 50 67 
 16 45 58 
 17 72 81 
 18 67 79 
 19 95 111 
 20 63 76 
 21 72 82 
 22 84 101 
 23 80 88 
 24 77 85 
 25 89 94 
 26 84 91 
 27 81 89 
 28 72 76 
 29 71 79 
 30 50 56 
 31 44 52 
 32 45 48 
 33 35 37 
 34 39 41 
 35 34 40 
 36 37 38 
 37 36 39 
 38 36 41 
 39 27 30 
 40 26 27 
 41 25 25 
 42 21 22 
 43 18 19 
 44 18 18 
 45 16 17 
 46 17 17 

 47 14 15 
 48 13 15 
 49 23 23 
 50 14 16 
 51 13 13 
 52 11 11 
 53 14 15 
 54 15 15 
 55 15 16 
 56 8 8 
 57 12 12 
 58 16 18 
 59 9 9 
 60 3 5 
 61 6 6 
 62 12 14 
 63 11 11 
 64 6 6 
 65 13 15 
 66 11 11 
 67 2 3 
 68 4 4 
 69 3 5 
 70 5 5 
 71 8 9 
 72 4 4 
 73 4 4 
 74 5 6 
 75 6 6 
 76 9 9 
 77 4 4 
 78 5 5 
 79 4 4 
 80 3 4 
 81 7 7 
 82 4 4 
 83 3 4 
 84 1 1 
 85 2 2 
 87 1 2 
 91 2 2 
 94 1 1 
 98 1 1 
 99 1 1 
 

Tab.1. Serological data for rubella, showing the age of the individuals, the number who were found to have experienced 
the disease and the number of people who were tested respectively. (Data taken from Farrington, [7].) 

,φR  the reproduction number under steady-state vaccination effort φ, is defined as the 
expected number of secondary infections with constant vaccination effort φ due to a single infected 
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individual entering the population at the disease-free equilibrium. We expect the disease to take off 
if and die out if . If we define  1>φR

φR

1≤φR
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[8]. The basic reproduction number R0 is when φ=0.  φR
Once the WAIFW matrix has been obtained it is used to estimate R0 and  will allow us 

to evaluate a given vaccination campaign. We will look at the practically relevant situations of a 
one stage vaccination campaign, where a given proportion of susceptible individuals are vaccinated 
at a fixed age, and a two stage vaccination campaign where given proportions of individuals are 
vaccinated at two fixed ages. A two stage vaccination campaign allows coverage of those 
individuals missed by the first vaccination. Further details are given in Greenhalgh and Dietz [8]. 

.φR φR

3. NUMERICAL RESULTS 

We used age-structured serological data provided to us by Farrington [7]. This is shown in 
Table 1 and consists of a large sample of males tested for rubella and gives the number seropositive 
at each age. We do not have any serological data for England and Wales prior to the start of the 
vaccination of women, so we have to use the men only to calculate the age-serological profile in the 
absence of vaccination. This is not perfectly correct as the immunisation of women will influence 
the force of infection and thus indirectly affect the age-serological profile. But the women who were 
immunised before our age-serological profile was collected were women around fifteen years of 
age. This was done to vaccinate the few remaining susceptible women before they entered the child-
bearing age-classes. Hence the vast majority of women experienced the disease in childhood and so 
achieved natural immunity. Thus although a significant percentage of women were immunised, the 
majority of these were naturally immune prior to vaccination. So the influence of these 
immunisations on both the force of infection and the male age-serological profile is very small. 
Hence it is reasonable to treat the male age-serological profile as though it were the age serological 
profile in the absence of vaccination and use it to evaluate immunisation programs. Data on age-
related mortality rates in England and Wales were taken from Preston, Keyfitz and Schoen [11].  

3.1. HOMOGENEOUS MIXING 

R0 is an important epidemiological measure. It must exceed one as we know that the disease 
persists in the absence of vaccination. A disease such as measles where R0 is large will spread 
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quickly and require a very high vaccination coverage to eliminate it. Calculation of R0 tells us how 
quickly the disease spreads in the absence of vaccination. The following values for R0 were 
obtained. 
 

Bandwidth Age at division Estimated R0 
5 and 15 25 years (Case A) 4.051 
5 and 15 15 years (Case B) 4.121 
5 and 25 25 years (Case C) 3.914 

Tab.2. Estimated value of R0 for variable bandwidths used. 

Figure 1 gives the minimum elimination vaccination proportions for the variable bandwidth 
case B. 
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Fig.1. Homogeneous mixing. Variable bandwidth with b1 = 5 years and b2 = 15 years (Case B). Estimated minimum 
elimination coverage proportions (a) p(a0), assuming vaccination at a fixed age a0 and (b) p2 at age A2 = 5 years given a 

coverage p1 at age A1 = 2 years. 

3.2. PROPORTIONAL MIXING 

Table 3 gives the values for R0 which were obtained. Figure 2 gives the minimum elimination 
vaccination proportions for the variable bandwidth case B. 

3.3. SYMMETRIC MIXING 

The last mixing assumption that we are going to examine is symmetric mixing. As we have 
already mentioned one of the difficulties with symmetric mixing is that we must make assumptions 
to reduce the number of elements in the who-acquires-infection-from-whom-matrix (WAIFW) 
matrix from n2 to n. It is sometimes difficult to decide what assumptions to make for the WAIFW  

 
Bandwidth Age at division Estimated R0 
5 and 15 25 years (Case A) 3.421 
5 and 15 15 years (Case B) 3.659 
5 and 25 25 years (Case C) 3.101 

Tab.3. Estimated value of R0 for variable bandwidths used. 
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(a)      (b) 

Fig.2. Proportional mixing. Variable bandwidth with b1 = 5 years and b2 = 15 years (Case B). Estimated minimum 
elimination coverage proportions (a) p(a0), assuming vaccination at a fixed age a0 and (b) p2 at age A2 = 5 years given a 

coverage p1 at age A1 = 2 years. 

matrix to remain feasible. The first priority is to determine matrices which give feasible results and 
can be motivated by biological considerations. We examined the following matrices based on 
previous work by Anderson and May [3] and Greenhalgh and Dietz [8]. 
 
 

Matrix A   Matrix B   Matrix C  
 β1 β1 β3 β4  β1 β2 β3 β2  β1 β1 β1 β4 
 β1 β2 β3 β4  β2 β2 β2 β2  β1 β2 β3 β4 
 β3 β3 β3 β4  β3 β2 β4 β4  β1 β3 β3 β4 
 β4 β4 β4 β4  β2 β2 β4 β4  β4 β4 β4 β4 

  
Matrix D    Matrix E 

 β1 β1 β1 β1  β1 β4 β4 β4 
 β1 β2 β2 β2  β4 β2 β4 β4 
 β1 β2 β3 β4  β4 β4 β3 β4 
 β1 β2 β4 β4  β4 β4 β4 β4 

 
 

Matrix A has high transmission within the second age category. In Matrix B there is a high 
level of transmission both from contacts within the second age category and from contacts between 
this age category and other age categories. β2 is the corresponding disease transmission coefficient. 
Matrix C is a variation on Matrix A and Matrix D is the reverse pattern of transmission than Matrix 
A. Matrix E is a special configuration where the transmission is high within each of the first three 
age classes but not between age classes. This is intended to model the spread of common childhood 
diseases among school children which spread predominantly among children of the same age 
groups. 
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(a) 
b1/b2 Matrix A Matrix B Matrix C Matrix D Matrix E 
5/5 2.600 ** 3.800 ** 2.701 

15/15 3.375 ** 3.560 ** 3.457 
5/15 2.906 ** 3.925 ** 3.214 

  
(b) 

b1/b2 Matrix A Matrix B Matrix C Matrix D Matrix E 
5/5 2.678 ** 3.450 ** 2.665 

15/15 3.331 ** 3.381 ** 2.852 
5/15 2.987 ** 3.501 ** 2.714 

Tab.4. Value of the basic reproduction number R0 for the cases of a bandwidth of five, fifteen years and a variable 
bandwidth of 5 years up to the age of 15 years and of 15 years thereafter. (a) Age class division 1-5, 6-10, 11-15 and 

16-99 and (b) Age class division 1-7, 8-12, 13-20 and 21-99. The notation ‘**’ means that there was at least one 
negative element in this estimated matrix which made the configuration infeasible. 

We obtained the following results which are shown in Table 4. In Figure 3 we give the 
minimum elimination vaccination proportions for the one and two stage vaccination campaigns 
when considering the configuration of Matrix A for a constant bandwidth of 5 years and the age 
division of Table 4(a). We decided to present this case only, because this is the matrix, age division 
and bandwidth that gave the lowest value for R0 and the highest value for the minimum elimination 
vaccination proportions. So we are particularly interested in this worst possible case as if we 
vaccinate these proportions of susceptible individuals we can be reasonably certain to eliminate 
rubella in the UK.  

4. SUMMARY AND CONCLUSIONS 

In this article we have used mathematical models to evaluate rubella vaccination programs in 
the UK. The basic reproduction number R0 is an important epidemiological quantity and gives an 
estimate of how fast the disease will spread in the absence of vaccination. Starting with an age-
serological profile we estimated both R0 and minimum elimination vaccination proportions for one 
stage and two stage immunisation strategies. Future work will use age-structured serological data to 
similarly evaluate vaccination programs for mumps in the UK and hepatitis A in Bulgaria and use 
the bootstrap method to estimate confidence and percentile intervals for the estimated 
epidemiological parameters. 
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 0.0
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   1.0
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Fig.3. Symmetric mixing. Matrix A and age division 0 – 5, 6 – 10, 11 – 15, 16 – 99 years. Estimated minimum 
elimination coverage proportions (a) p(a0), assuming vaccination at a fixed age a0 and (b) p2 at age A2 = 5 years given a 

coverage p1 at age A1 = 2 years. 
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