PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical models for evaluation, optimization, and control of artificial kidney therapy

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Renal replacement therapy involves the control of body pools of water and electrolytes, and removal of small metabolites (urea, creatinine). The correct estimation of "the dose of therapy" and optimisation of the procedure needs quantification of fluid and solute transport during dialysis as well as evaluation of the distribution and exchange of water and solutes within the body. Mathematical models can combine the general physiological knowledge with information about individual patients yielded by clinical measurements. Many of these models (urea model, sodium model, models of peritoneal transport) have been presented to the community of clinical nephrologists in the form of computer programs often supplemented with on-line measuring devices. However, the debate about their meaning and the search for better methods of their application are still vivid.
Rocznik
Tom
Strony
IP27--39
Opis fizyczny
Bibliogr. 52 poz., rys.
Twórcy
autor
  • Institute of Biocybernetic and Biomedical Engineering PAS, Trojdena 4, 02-109 Warsaw, Poland
  • Interdisciplinary Centre for Mathematical and Computer Modelling, Warsaw University, Pawinskiego 5a, 02-106 Warsaw, Poland
  • Baxter Novum, Huddinge University Hospital, Karolinska Institute, S 14186 Huddinge, Sweden
Bibliografia
  • [1] Ahrenholz P., Baz M., Boobes Y., El Mehdi M., Elsen R., Falkenhagen D., Klinkmann H., Loie B., Murisasco A., Pujo J.M., Applied integrated electrolyte, volume, and urea modeling to define hemodialysis strategy and control execution of optimized treatment. In: Nose Y., Kjellstrand C., Ivanovich P. (eds), Progress in artificial organs – 1983, pp. 121-127, ISAO Press, Cleveland, 1986.
  • [2] Ahrenholz P., Falkenhagen D., Klinkmann H. Control aspects in hemodialysis. In: Nalecz M. (ed), Control aspects of biomedical engineering, pp. 95-110, Pergamon Press, Oxford, 1987.
  • [3] Bommer J., If you wish to improve adequacy of dialysis, urea kinetics, such as Kt/V, may be the wrong parameter to study. ASAIO Journal, Vol. 47, pp. 189-191, 2001.
  • [4] Buur T., DiaKin: an integrated program package for hemodialysis kinetics. Computer Methods and Programs in Biomedicine, Vol. 31, pp. 243-254, 1990.
  • [5] Dedrick R.L., Flessner M.F., Collins J.M., Schultz J.S., Is the peritoneum a membrane? ASAIO Journal, Vol. 5, pp. 1-8, 1982.
  • [6] Depner T.A., Kesheviah P.R., Essen J.P., Emerson P.P., Collins A.J., Lindal K.K., Nissenson A.R., Lazarus J.M., Pij K., Multicenter clinical validation of an on-line monitor of dialysis adequacy. Journal of American Society of Nephrology, Vol. 7, pp. 464-471, 1996.
  • [7] Flessner M.F., Peritoneal transport physiology: insight from basic research. Journal of American Society of Nephrology, Vol. 2, pp. 122-135, 1991.
  • [8] Flessner M.F., Dedrick R.L., Schultz J.S., A distributed model of peritoneal - plasma transport: theoretical considerations. American Journal of Physiology, Vol. 246, pp. R597-R607, 1984.
  • [9] Gotch F.A., Kt/V is the best dialysis dose parameter. Blood Purification, Vol. 18, pp. 276-285, 2000.
  • [10] Gotch F.A., Sargent J.A., A mechanistic analysis of the National Cooperative Dialysis Study (NCDS). Kidney International, Vol. 28, pp. 526-534, 1985.
  • [11] Guyton A.C., Textbook of medical physiology, Saunders, Philadelphia, PA, 1981.
  • [12] Haraldsson B., Assessing the peritoneal dialysis capacities of individual patients. Kidney International, Vol. 47, pp. 1187-1198, 1995.
  • [13] Haraldsson B., Optimization of peritoneal dialysis prescription using computer models of peritoneal transport. Peritoneal Dialysis International, Vol. 21, pp. S148-151, 2001.
  • [14] Heineken F.G., Evans M.C., Keen M.L., Gotch F.A., Intercompartmental fluid shifts in hemodialysis patients. Biotechnology Progress, Vol. 3, pp. 69-73, 1987.
  • [15] Hemo Study Group. Prepared By Daugirdas J.T., Depner T.A., Gotch F.A., Greene T., Keshaviah P., Levin N.W., Schulman G. Comparison of methods to predict equilibrated Kt/V in the HEMO pilot study. Kidney International, Vol. 52, pp. 1395-1405, 1997.
  • [16] Henderson L.W., Critical interpretation of adequacy parameters in peritoneal dialysis and hemodialysis. Peritoneal Dialysis International, Vol. 19, Supp. 2, pp. 38-44.
  • [17] Kaplan B., Wang Z., Siddhom O., Henthorn T.K., Mujais S.K., Evaluation of urea kinetics utilizing stable isotope urea and pharmacokinetic modeling. Artificial Organs, Vol. 23, pp. 44-50, 1999.
  • [18] Keshaviah P., Star R.A., A new approach to dialysis quantification: an adequacy index based on solute removal. Seminars in dialysis, Vol. 7, pp. 85-90, 1994.
  • [19] Kjellstrand C.M., Rationale for daily hemodialysis. ASAIO Journal, Vol. 47, pp. 438-442, 2001.
  • [20] Li P.K.T., Szeto C.-C., Adequacy targets of peritoneal dialysis in the Asian population. Peritoneal Dialysis International, Vol. 21, Supp. 3, pp. 378-383, 2001.
  • [21] Lindholm B., Heimburger O., Waniewski J., Werynski A., Bergstrom J., Peritoneal ultrafiltration and fluid reabsorption during peritoneal dialysis. Nephrology Dialysis Transplantation, Vol. 4, pp. 805-813, 1989.
  • [22] Lowrie E. G., The normalized treatment ratio (Kt/V) is not the best dialysis dose parameter. Blood Purification, Vol. 18, pp. 286-294, 2000.
  • [23] Lysaght M.J., Farrell P.C., Membrane phenomena and mass transfer kinetics in peritoneal dialysis. Journal of Membrane Science, Vol. 44, pp. 5-33, 1989.
  • [24] Mann H., Stiller S., Gladziwa U., Konigs F., Kinetic modelling and continuous on-line blood volume measurements during dialysis therapy. Nephrology Dialysis Transplantation, Supp. 1, pp. 144-146, 1990.
  • [25] Metry G.S., Attman P., Lonnroth P., Beshara S.N., Aurell M., Urea kinetics during hemodialysis measured by microdialysis - a novel technique. Kidney International, Vol. 44, pp. 622-629, 1993.
  • [26] Petitclerc T., Goux N., Reynier A.L., Bene B., A model for non-invasive estimation of in vivo dialyzer performances and patient’s conductivity during hemodialysis. International Journal of Artificial Organs, Vol. 16, pp. 585-591, 1993.
  • [27] Petitclerc T., Hamani A., Jacobs C., Optimization of sodium balance during hemodialysis by routine implementation of kinetic modeling. Blood Purification, Vol.10, pp. 309-316, 1992.
  • [28] Prakash S., Reddan D., Heidenheim A.P., Kianfar C., Lindsay R.M., Central, peripheral, and other blood volume changes during hemodialysis. ASAIO Journal, Vol. 28, pp. 379-382, 2002.
  • [29] Rippe B., Krediet R.T. Peritoneal physiology - transport of solutes. In: Gokal R. and Nolph K.D., editors. The textbook of peritoneal dialysis, pp. 69-113, Kluwer, Dordrecht, 1994.
  • [30] Ronco C., Dell’aquila R., Continuous flow peritoneal dialysis. Peritoneal Dialysis International, Vol. 21, Supp. 3, pp. 138-143, 2001.
  • [31] Sargent J.A., Control of dialysis by a single-pool urea model: the national cooperative dialysis study. Kidney International, Vol. 23, pp. S19-25, 1983.
  • [32] Sargent J.A., Gotch F.A., Principles and biophysics of dialysis. In: Drukker W, Parsons FM, Maher JF, editors. Replacement of renal function by dialysis, pp. 53-96, Martinus Nijhoff, Haga , 1983.
  • [33] Sargent J.A., Gotch F.A., Borah M., Piercy L., Spinozzi N., Schoenfeld P., Humpreys M., Urea kinetics: a guide to nutritional management of renal failure. American Journal of Clinical Nutrition, Vol. 31, pp. 1696-1702, 1978.
  • [34] Schneditz D., Daugirdas J.T., Compartment effects in hemodialysis. Seminars in Dialysis, Vol. 14, pp. 271-277, 2001.
  • [35] Schneditz D., Farlylke B., Osheroff R., Levin N.W., Is intercompartmental urea clearance during hemodialysis a perfusion term? A comparison of two pool urea kinetic models. Journal of American Society of Nephrology, Vol. 6, pp. 1360-1370, 1995.
  • [36] Shinaberger J.H., Quantification of dialysis: historical perspective. Seminars in Dialysis, Vol. 14, pp. 238-245, 2001.
  • [37] Stefanidis I., Stiller S., Ikonomov V., Mann H., Sodium and body fluid homeostasis in profiling hemodialysis treatment. International Journal of Artificial Organs, Vol. 25, pp. 421-428, 2002.
  • [38] Stiller S., Xu X.Q., Gruner N., Vienken J., Mann H., Validation of a two-pool model for the kinetics of beta2-microglobulin. International Journal of Artificial Organs, Vol. 25, pp. 411-420, 2002.
  • [39] Thews O., Deuber H.J., Hutten H., Schulz W., Theoretical approach and clinical application of kinetic modeling in dialysis. Nephrology Dialysis Transplantation, Vol. 6, pp. 180-192, 1991.
  • [40] Ursino M., Coli L., Brighenti C., De Pascalis A., Chiari L., Dalmastri V., La Manna G., Mosconi G., Avanzolini G., Stefoni S., Mathematical modeling of solute kinetics and body fluid changes during profiled hemodialysis. International Journal of Artificial Organs, Vol. 22, pp. 94-107, 1999.
  • [41] Vanholder R.C., Ringoir S.M., Adequacy of dialysis: A critical analysis. Kidney International, Vol. 42, pp. 540-558, 1992.
  • [42] Vonesh E.F., Lysaght M.J., Moran J., Farrell P., Kinetic modeling as a prescription aid in peritoneal dialysis. Blood Purification, Vol. 9, pp. 246-270, 1991.
  • [43] Waniewski J., Mathematical models for peritoneal transport characteristics. Peritoneal Dialysis International, Vol. 19, pp. S193-S201, 1999.
  • [44] Waniewski J., Thermodynamic models of membrane transport as applied to peritoneal dialysis and hemodialysis. D.Sc. Thesis. Institute of Biocybernetics and Biomedical Engineering. Warsaw 1994. (At: http://www.ibib.waw.pl/ ~peritome)
  • [45] Waniewski J., Mathematical modeling of fluid and solute transport in peritoneal dialysis. Ph. D. Thesis. Karolinska Institute, Stockholm 2001. (At: http://www.ibib.waw.pl/~peritome)
  • [46] Waniewski J., Physiological interpretation of solute transport parameters for peritoneal dialysis. Journal of Theoretical Medicine, Vol. 3, pp. 177-190, 2001.
  • [47] Waniewski J., Heimbürger O., Werynski A., Lindholm B., Simple models for fluid transport during peritoneal dialysis. International Journal of Artificial Organs, Vol. 19, pp. 455-466, 1996.
  • [48] Waniewski J., Werynski A., Lindholm B., Effect of blood perfusion on diffusive transport in peritoneal dialysis. Kidney International, Vol. 56, pp. 707-713, 1999.
  • [49] Werynski A., Waniewski J., Theoretical description of mass transport in medical membrane devices. Artificial Organs, Vol. 19, pp. 420-427, 1995.
  • [50] Woodrow G., Oldroyd B., Wright A., Coward W.A., Turney J.H., Brownjohn A.M., Truscott J.G., Smith M.A., The measurement of total body potassium in patients on peritoneal dialysis. Peritoneal Dialysis International, Vol. 21, Supp. 3, pp. 163-167, 2001.
  • [51] Ziółko M., Pietrzyk J. A., Grabska-Chrząstowska J., Accuracy of hemodialysis modeling. Kidney International, Vol. 57, pp. 1152-1165, 2000.
  • [52] Zucchelli P., Hemodialysis-induced symptomatic hypotension. A review of pathophysiological mechanisms. International Journal of Artificial Organs, Vol. 10, pp. 139-144, 1987.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0023-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.