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NUMERICAL TREATMENT OF REGISTRATION PROBLEM IN GENERATION 
OF PATIENT-SPECIFIC ANATOMICAL MODELS  

Registration is an important component of many medical data processing applications. Particularly 
significant is its role in the correlation of volumetric medical data aiming at generation of virtual patient-specific 
anatomical models. Such models enable optimization of various diagnostic and therapeutical procedures. The 
importance of the virtual patient models is becoming increasingly recognized in modern medicine. The 
advantages of using such biomedical virtual models are analogous to the advantages of real system behavior 
simulation in the engineering or material sciences. In this work some numerical issues associated with the 
registration problem and the visualization challenges arising in the context of virtual anatomical models have 
been presented and discussed.  

1. INTRODUCTION 

Sophisticated image processing methods for 3D medical images are of considerable 
importance to the effective use and understanding of medical imagery in many applications, 
particularly in those requiring accurate representation of anatomical structures like diagnosis, 
therapy planning and simulation. A large number of algorithmic techniques for reconstruction, 
segmentation, registration, visualization and other image processing methods have been reported in 
the literature [1]. One of the most exciting challenges in this area of research is how to integrate 
diverse forms of raw and processed information towards a common information framework. 
Tomographic images of different modalities, and outcomes of the above mentioned image 
processing methods provide structural input to such framework called in the literature as the virtual 
patient-specific anatomical model. Such models provide many advantages for diagnostics and 
treatment planning, particularly in the radiation therapy or for complex surgical procedures. The 
virtual patient-specific anatomical models enable enhanced perception of the region of interest as 
well as simulation of the surgical or radiation treatment and the evaluation of potential scenarios. 
The registration approach plays an important role in the generation of the virtual anatomical model 
for the patients undergoing two or more imaging studies. Because the acquisition of the data is 
procedurally and technologically independent, the complementary information provided by 
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different imaging modalities has to be correlated by means of numerical methods. The usability of 
the complex virtual patient models depends strongly on efficient visualization methods that enable 
exploration of such huge amount of data. This paper is organized into two main sections: numerical 
issues associated with the registration method, and generation and visualization of the virtual 
anatomical model. The related results and problems will be discussed at the end of the work.  

2. REGISTRATION FOR VIRTUAL ANATOMICAL MODELS 

The registration along with the segmentation task belong to the major efforts in the process of 
generation the patient-specific virtual anatomical model. The registration problem induced by the 
fact that two datasets of the same patient taken in one modality at different times or in more than 
one modality differ with respect to resolution, acquisition plane, or parameter measured. Before 
they can be used in conjunction with each other, it is first necessary to register or correlate 
geometrically these two or more sets of data (see Figure 1). Because of the above differences the 
process of spatial alignment is not trivial. To solve this problem using numerical methods we have 
to define a geometrical transformation relating the two data sets as well as a criterion for the 
goodness of a given transformation. We treat the registration problem as a non-linear optimization 
task aimed at the minimization of the dissimilarity measure. 

Fig.1. Generation of the virtual patient-specific anatomical model. Top line (left to right): CT, MR and PET scanning 
devices delivering complementary diagnostic information. Middle line: individual slices from the volumetric datasets 

acquired from the above presented devices. Bottom: virtual patient-specific anatomical model generated from the 
multimodal datasets (brain is yielded from the MR dataset, and bones and skin from the CT dataset). 
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2.1. FORMAL STATEMENT OF THE REGISTRATION PROBLEM 

To provide the basis for more technical description of the registration problem and the 
associated concepts we define the similarity measure  as the objective function, which has to 
quantify how well the two datasets (let us call them model and object) match with each other. The 
matching transformation T is defined as a geometric transformation that takes a point  of the 
object volume and gives its anatomically equivalent and unique model point . The majority of 
registration methods share a common optimization framework, where the goal is to estimate 
numerically the optimal transformation Tv, which establishes the anatomically optimal spatial 
correspondence between the model and the object. In case of rigid body transformation (six degrees 
of freedom) 
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v=[rx ry rz tx ty tz] is a six-component vector, which has to be estimated. Many 
different registration methods have been proposed in the literature [2]. In this work, from the most 
representative similarity measure classes two similarity functions have been chosen. The first one is 
the surface similarity measure: 
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The second similarity function is the mutual information measure: 
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where  is a probability distribution of the scatter-plot histogram [2], and the , 
 are the probabilities for each object and model gray-value in the intersection volume. 

and  are the gray-value sets of the model and object volumes. Both similarity measures 
represent different approaches to quantify the similarity between two datasets. The first one is 
taking into account features identified in a non-automatic segmentation step (at the preprocessing 
stage). The second one uses the whole gray-value information from both datasets and works without 
any preprocessing stage. Unlike the surface similarity approach, where the similarity assessment 
takes place in Euclidean space, the mutual information measure works in a different mathematical 
space and estimates the distance between the probability distribution of the scatter-plot histogram 

 and distribution  of two independent signals. 
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In this work our main interest is focused on the optimization task related to the registration 

problem. There is a plenty of different numerical optimization methods [3]. To choose the most 
adequate one for a specific class of registration problems, one has to consider a few important factors. 
Assessing the match quality in the continuous Euclidean or probabilistic spaces determines the 
continuous nature of the registration problem for the volumetric medical data. The nonlinear nature of 
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the matching functions and the existence of local minima has been described in the literature [2]. 
Because of the huge size of the datasets, computation of the objective function value or its derivatives is 
a very time consuming part of the whole optimization process. The existence of local minima requires 
applying global non-deterministic optimization methods [2]. But in this class of methods a high number 
of objective function calculations are often necessary to satisfy convergence criteria, what is impractical 
in the case of medical data registration. In opposite, there exists a wide group of much less time 
consuming, deterministic algorithms. Depending on the kind of objective function we may use different 
deterministic optimization techniques. If we are only able to compute the value of the function for a 
given set of variable parameters and we cannot even estimate its gradient we may use Powell’s method 
[3]. In cases when we are able to compute something more than just a function’s value we can choose a 
few numerical techniques that follow the simple nonlinear optimization solution. The simplest method, 
gradient descent (or ascent) just follows the gradient of the objective function until it hits a local 
minimum and then stops [3]. Some more recent methods for solving optimization problems methods 
like Davidon-Fletcher-Powell [3] or Levenberg-Marquardt [4] try to estimate or compute second 
derivatives of the objective functions. With this information, local areas of the objective function can be 
approximated quadratically for the better convergence properties. With deterministic methods for highly 
nonlinear optimization problems, the absolute best solution is not always guaranteed unless we start 
close to it. In this work two deterministic methods have been chosen: the Levenberg-Marquardt 
optimization scheme for the surface similarity measure and the Powell’s method for the optimization of 
the mutual information based objective function. The next sections contain a short description of these 
nonlinear minimization techniques. 

2.2. LEVENBERG-MARQUARDT OPTIMIZATION METHOD 

The Levenberg-Marquardt optimization scheme is a standard nonlinear least-square technique 
that works very well in a wide range of situations. It provides a way to vary smoothly between the 
Gauss-Newton method and the steepest descent method. The Gauss-Newton optimization method is 
specifically designed for minimizing the objective function, which has the form of sum of square 
functions, such as the surface similarity function. One of the most important features of Gauss-
Newton optimization method is the very fast convergence, but the method converges only close to 
the optimum. The method of steepest descent is the simplest of the gradient methods. The choice of 
direction is where C(v) decreases most quickly, which is in the direction opposite to ∇C (gradient 
of C(v)). The search starts at an arbitrary point v0 and then slides down the gradient, until we are 
close enough to the solution. The method of steepest descent is simple, easy to apply, and each 
iteration is fast. If the minimum points exist, the method is guaranteed to locate them after at least a 
finite number of iterations. But, even with all these positive characteristics, the method has one very 
important drawback - it generally has slow convergence. 

2.3. POWELL’S OPTIMIZATION METHOD 

The Powell’s method is a single-shot method, which attempts to find the local fit statistics 
minimum nearest to the starting point. The main advantage of this numerical technique is that it is a 
robust direction-set method. Algorithm minimizes the function in one coordinate direction, and then 
from there it moves along the next direction until a minimum is reached. The method is cycling 
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through the whole set of directions until the fit statistics is minimized for a particular iteration. After 
that process the set of directions is updated and the next iteration proceeds. The procedure continues 
until the algorithm converges to the point at which no set of directions can be found that results in a 
better value of an objective function, to within a preset tolerance. 

3. RESULTS 

For analysis of the optimization method’s behavior during the registration process both above 
described deterministic optimization methods have been implemented and tested on medical 
datasets. Multiple test series with different intramodal and intermodal datasets have been conducted. 
For each trial a 2D-misregistration graph with the convergence track has been generated and the 
matching results visually inspected. In Fig. 2 one of the test dataset pairs has been shown. Other test 
datasets have been taken from the Visible Human Project dataset pool [5,6]. In this work we will 
use the MR and PET case to illustrate the observed, also in other trials, behavior of the tested 
objective functions and optimization methods. The sizes of the MR and PET datasets were 
256×256×55 and 128×128×31 respectively. The registration procedures described in this article 
have been performed on a PC system (Athlon XP 3200+ 2.2 GHz, 512 MB RAM). The matching 
process using the mutual information measure and the Powell’s optimization method took 2 min 42 
sec (two-step multi-resolution approach) and required 2156 calculations of the mutual information 
objective function. In the second case (surface similarity measure and the Levenberg-Marquardt 
optimization method) the total running time took 3.7 sec (2.18 sec – pre-calculation of the 
Euclidean distance map and 1.52 sec – optimization). The optimal geometric transformations (see 
Fig. 2 (right)) obtained with these different methods were equal with respect to some preset 
tolerance. In Fig. 3 selected 2D misregistration graphs with the convergence track for the MR and  
 

Fig.2. 3D view of the test data used in the optimization analysis: MR (left) and PET (middle) datasets of the same 
patient. Overlay view of the matched image volumes (right): the false color coded PET sagittal slice superposed onto 

the corresponding MR slice. 

PET registration case have been presented. In the left column the surface similarity function 
landscapes for the selected pairs of search space principal axes have been shown. The black dots 
above the surfaces denote the single steps (or iterations) of the converging Levenberg-Marquardt 
optimization method. The equivalent misregistration graphs for the mutual information with the 
convergence tracks for the Powell’s optimization method have been shown in the right column. The 
presented graphs reveal the characteristics of the objective function in the neighborhood of the 
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global optimum as well as the convergence behavior of both optimization methods in the analyzed 
registration problems. The gradient dependency and the direction sets of the analyzed search 
strategies can be easily observed in the presented graphs. Both optimization methods estimated 
successfully the optimal matching transformations in all of the tested cases and avoided falling into 
local minima. It was possible due to compatible initial positioning of the tested dataset pairs. 

   

   

   

  
Fig.3. Selected 2D-misregistration graphs for the MR and PET test datasets. Left column: convergence behavior of the 
Levenberg-Marquardt method for the surface similarity measure. Right column: convergence behavior of the Powell 

method for mutual information similarity measure. 
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The presented above registration approaches together with robust segmentation techniques 
enable creation of highly detailed virtual patient-specific anatomical models (see Figures 1, 4 and 
5), which provide the most efficient diagnostic assistance and can significantly improve many 
surgical or radiation therapy planning procedures. Variety of visualization methods enables 
different problem-oriented views of the whole model or the region of interest only. In Figures 4 and 
5 different views of the same virtual model have been presented. Depending on the medical 
indications the virtual anatomical models can be visualized using 2D slice views or as 3D 
reconstructions. Effective exploration of the correlated datasets for diagnostic purposes can be 
achieved using inspection window or adjustable alpha-blending technique (see Fig. 5). For surgery 
or radiation therapy planning the surface rendering and volume rendering techniques (or both mixed 
with the 3D slice views) may be applied for effective visualization of the spatial relationships and to 
reveal some information that is not optimally visible in 2D (see Fig. 4). The most advanced 
approach to explore and interact with the virtual models offers the virtual reality environment, 
where the physician is fully or partially immersed in the virtual representation of the anatomical 
model. 

 

Fig.4. Three-dimensional visualization techniques: (from left) surface rendering, volume rendering, combination of 
volume and surface rendering, 3D-slices combined with surface rendering. 

 

Fig.5. Two-dimensional visualization of registered volumetric datasets (CT and MR-T2): (from left) transversal, sagittal 
and coronal views with inspection window, transversal view of the semi-transparent MR dataset overlying CT volume.  

4. CONCLUSIONS 

In this work different issues related to numerical methods in the registration of medical data 
have been presented and discussed. Two examples of different approaches to solve the optimization 
problem have been analyzed: the surface similarity measure optimized with the Levenberg-
Marquardt method and the mutual information measure optimized with the Powell method. The two 
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deterministic optimization methods applied to different similarity measures reveal various 
convergence behavior and computational costs, but from the medical point of view both approaches 
result in the anatomically correct alignment. The correlated volumetric datasets found the base for 
the construction of the virtual patient-specific anatomical model. After the segmentation step the 
presented variety of visualization methods enables efficient exploration and utilization of the virtual 
patient model. In addition to the currently implemented optimization methods we plan in the future 
work to include also non-deterministic optimization methods like e.g. genetic algorithms or hybrid 
methods e.g. deterministic simulated annealing. Furthermore, we are working on the improvement of 
the rendering and model manipulation tools to achieve more intuitive and user-friendly interaction 
within the virtual scene. Further improvement of the multi-resolution approach and the code 
optimization will aim at the reduction of time required for the registration process. 
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