PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Clinical applications of biomechanical simulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The planning of therapeutical interventions and the understanding of pathological processes may be improved by providing tools for biomechanical simulation. This article focuses on computational services providing numerical simulations for analysis, prediction and virtual prototyping to the medical sector ("bio-numerics"). Two example problems are discussed: (1) The simulation of distraction osteogenesis using Finite Element Models (FEM): Simulations use highly resolved meshes in order to represent the complex midface structures with sufficient detail. Meshes with 1 mm resolutions typically have 1+ million nodes, so forward models must be computed on high performance computing (HPC) platforms. Pre-operative planning involves "playing" with different what-if scenarios so fast response times are highly desirable in order to provide tools that are accepted in a clinical environment. (2) Intra-operative planning in neurosurgery using inverse biomechanical models: Surgically induced deformations invalidate pre-operatively acquired information about functionally relevant areas. This problem is addressed by non-linear registration of pre-operative functional Magnetic Resonance Imaging (MRI) data to intra-operative MRI data.
Rocznik
Tom
Strony
IP3--11
Opis fizyczny
Bibliogr. 8 poz., rys.
Twórcy
autor
  • Max-Planck-Institute of Cognitive Neuroscience, Stephanstrasse 1, D-04103 Leipzig, Germany
  • Max-Planck-Institute of Cognitive Neuroscience, Stephanstrasse 1, D-04103 Leipzig, Germany
autor
  • Max-Planck-Institute of Cognitive Neuroscience, Stephanstrasse 1, D-04103 Leipzig, Germany
Bibliografia
  • [1] AIMEDIEU P., GREBE R., The VivMat-Site. http://www.u-picardie.fr/labo/UGBM/, 2003.
  • [2] BASERMANN A., FINGBERG J., LONSDALE G., MAERTEN B., Dynamic multi-partitioning for parallel finite element applications. Proc. Int. Conf. ParCo'99, pp. 259-266, Imperial College Press, London, 2000.
  • [3] CLARKSON K.L., MEHLHORN K., SEIDEL R., Four results on randomized incremental constructions. Computational Geometry: Theory and Applications 3, pp. 185-212, 1993.
  • [4] CLAY R.L., MISH K.D., OTERO I.J., TAYLOR L.M., WILLIAMS A.B., An annotated reference guide to the finite element interface specification. Sandia Report SAND99-8229, http://z.ca.sandia.gov/fei/, 1999.
  • [5] POPE A.R., LOWE D.G., Vista: A software environment for computer vision research. Computer Vision and Pattern Recognition (CVPR'94), pp. 768-772. IEEE Press, Los Alamitos, 1994.
  • [6] The SimBio Project, http://www.simbio.de, 2003.
  • [7] TITTGEMEYER M., WOLLNY G., KRUGGEL F., Visualising deformation fields computed by non-linear image registration. Computing and Visualization in Science, Vol. 5, pp. 45-51, 2002.
  • [8] WOLLNY G., KRUGGEL F.; Computational cost of non-rigid registration algorithms based on fluid dynamics. IEEE Transactions on Medical Imaging, Vol. 21, pp. 946-952, 2002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA4-0020-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.