
JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol.5/2003, ISSN 1642-6037 

exception reporting, outbreak, 
surveillance, prediction 

Gavin MCCABE*, David GREENHALGH*, George GETTINBY*, 
Eileen HOLMES**, John COWDEN*** 

PREDICTION OF INFECTIOUS DISEASES:AN EXCEPTION REPORTING 
SYSTEM 

In this paper prediction methods are discussed in the context of developing an exception reporting system 
for laboratory reports. The detection of outbreaks and longer term trends is briefly addressed, before a 
consideration of data types and availability to be used in evaluating the prediction methods. Four general 
prediction methods are outlined and the selection of data to which they are applied is examined. Both real and 
simulated data are used to evaluate the prediction methods and a strategy for an exception reporting system is 
proposed. 

1. INTRODUCTION 

There has recently been a growing expectation that institutional bodies should be adequately 
prepared for, and respond rapidly to, events which impinge on public life. In few areas is this more 
true than in public health and it is clear that the early detection of possible outbreaks of infection is 
vital to this objective. 

In the UK, diagnostic microbiology laboratories participate in a voluntary system of reporting 
organisms identified from samples taken from patients for clinical reasons when they present to 
their family doctors or hospitals. In Scotland, these reports are collated by the Scottish Centre for 
Infection and Environmental Health (SCIEH), and in England and Wales by the Communicable 
Disease Surveillance Centre (CDSC). Although these reports are valuable there is no formal 
threshold of what constitutes an outbreak or a potential outbreak. While an outbreak may be defined 
as “an epidemic limited to localised increase in the incidence of a disease” [1], this begs the 
question of what is an epidemic. In fact, in practice, an outbreak is simply “more reports than would 
be expected”. At national level, therefore, outbreak detection depends upon the expert, but 
subjective, judgement of staff in the national surveillance centre. On identifying a potential 
outbreak staff access routinely available information from each report, to assess whether or not 
further investigation is warranted. The combination of limited resources and increasingly vast 
numbers of different organisms being reported each week means that the development of more 
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automated detection systems is vital in order to support consultants and epidemiological 
practitioners in their surveillance activities. 

However, in attempting to detect potential outbreaks how can a decision routinely be made 
whether or not it is appropriate to raise an alarm? A system that repeatedly yields false alarms will 
eventually be ignored by practitioners, but the failure to detect even the clearest outbreak renders 
the system redundant. With thousands of different organisms monitored nationally on a weekly 
basis, it is impractical to design systems specifically tailored to volumes of individual organisms 
and thus the development of generically applicable detection procedures is essential. 

While there have been published methods looking at the automated detection of possible 
outbreaks for individual organisms or health events [2-4], relatively few exist that deal with the 
diversity of organism characteristics presented to national centres [5-7]. Regardless of the breadth 
of their focus, most published detection systems can be broken down into two main components: 
the first element predicts the expected count for a specific organism for a given week in the future; 
the second element makes a comparison of the observed and predicted counts, and on the basis of 
this comparison makes a decision whether or not to trigger an alarm. Such systems should not be 
called ‘outbreak detection systems’ as outbreak detection is not the role of an automated system, but 
rather the responsibility of experts in the field related to each organism. The term ‘exception 
reporting system’ is more accurate as its function is to report to practitioners exceptional data 
points, which can then be further investigated if warranted. 

In this paper approaches to the development of the prediction element of an exception 
reporting system are discussed and, using data from the Scottish Centre for Infection and 
Environmental Health, an evaluation of how such procedures can be used to make useful 
predictions as part of an overall, generic and automated system is given.  

2. MATERIALS 

Taking into account all the various typings and sub-typings of organisms, SCIEH’s databases 
currently contain information on 2364 different organisms. These databases are updated on a 
weekly basis with reports from the diagnostic microbiology laboratories throughout Scotland. Most 
reports arise from isolates from specimens sent to these laboratories from general practitioners, 
hospitals, environmental health officers and others for clinical reasons. For each report, information 
is provided on the case’s sex, age, geographical location, as well as the timing of the report, the 
reporting laboratory and health board, and additional clinical information. These resultant reports 
are grouped into six broad areas: Escherichia coli infections, non-viral infections, viral infections, 
Salmonella infections, tuberculosis infections and samples taken from a veterinary source. 
Examples of the observed reports for two organisms can be seen at the top of Figures 1 and 2 at the 
end of this paper. 

In order to facilitate the testing of various prediction methods it was necessary to use both real 
and simulated data. The need for simulated data arose due to the absolute control over the patterns 
and characteristics of the data that simulation yields, while the need for validation on real data is 
immediately clear. However, due to the sheer number of different organisms available, it was 
necessary to reduce the number of real data series used and make a selection of organisms that 
would characterise in some broad sense the diversity of features exhibited in the range of data. Of 
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the 2364 organisms available within SCIEH’s databases, only 70 have an average weekly report 
rate that is greater than or equal to one, for the period from 1990 to 2001 inclusive. Each of these 70 
organisms were selected as it was felt by practitioners that exception reporting was most valuable 
when applied to the more common organisms, as opposed to the rarer organisms within which 
points of exception are generally much more evident and identified much more rapidly. Alongside 
those 70 organisms, a further 35 were selected pseudo-randomly from the range of organisms 
whose average weekly report rate was below one, selected in such a manner so as to reflect the 
distribution of organisms across the scale from zero to one. 

These 105 organisms were used to both provide real data on which to test the prediction 
methods, and to simulate data again for testing the prediction methods. Four data characteristics 
stood out as clearly requiring explicit attention in order to make useful predictions based on 
historical data for a generic, automated exception reporting system: 

1) the average weekly reporting rate; 
2) the magnitude of trend seen across the years of data; 
3) the magnitude of seasonality seen within the data; and 
4) whether or not outbreaks were present within the historical data. 
 
Each of the 105 organisms was classified on the basis of their average weekly reporting rates 

over the period 1990 to 2001, and their trends and seasonalities were highlighted using 
correlograms. This use of correlograms was particularly important for the rarer organism for which 
any seasonal pattern is frequently much more difficult to observe by eye. It became clear that, as 
well as the cases where no trend or seasonality was evident, there were two distinct magnitudes of 
both trend and seasonality, now categorised as ‘strong’ and ‘weak’. As might be expected, across 
the range of reporting rates (zero to above 70), the numerical magnitude of seasonal peak associated 
with e.g. strong seasonality would vary. In order to create sensible simulated data, relationships 
were drawn between the reporting rate and numerical magnitude of each trend and seasonality 
category using the 105 selected organisms. The seasonal amplitude was found to be given by 
MATERIALE × rateδ, where γ was 272.14 and δ equalled 0.2758 for the weak category and the 
strong category was specified by a γ value of 239.99 and a δ value of 0.7021. The gradient of the 
trend was specified by α + β× rate, where α was 0.0031 for the weak category and 0.0054 for the 
strong, and β equalled 0.0015 and 0.0035 for the weak and strong categories respectively. 
Obviously the magnitude of outbreaks included within the simulated data was much more arbitrary, 
but nevertheless their inclusion was important so as to isolate the effect historical outbreaks had on 
the various prediction methods tested. Twenty years of data were simulated for each combination of 
weekly reporting rate (0.1, 0.5, 1, 3, 5, 10, 20 and 50), trend (none, weak and strong), seasonality 
(none, weak and strong) and outbreaks (included or not included). 

3. PREDICTION APPROACHES TO ANALYSIS 

3.1. PREDICTION METHODS 

Examining previously published detection systems (both those applied to single organisms or 
health events, and those few that were applied to a broader range of organisms), a variety of 
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prediction methods were isolated as being of potential use for a generic, automated exception 
reporting system. While many detection systems used prediction methods that were far too 
dependent on user input or computationally intensive, four main prediction methods came to the 
fore with a mixture of complexities, namely: 

1) exponentially weighted moving averages (EWMAs); 
2) the mean of selected historical data; 
3) zero-inflated Poisson modelling (ZIP); and 
4) generalised linear modelling (GLM). 

EWMA, also known as exponential smoothing, is a method that has been used in a variety of 
areas including nosocomial infection surveillance data in connection with suspected outbreaks of 
gentamicin resistance among Pseudomonas aeruginosa bacteria [8]. Exponential smoothing derives 
its name from the fact that it is formed by a weighted moving average that has geometric weights 
that lie on an exponential curve, i.e. weights which decrease by a constant ratio each step back [9]. 
Therefore the one-step-ahead forecast made at time N for a time series, x1, x2, …, xN, is given by 

 ( ) ( ) ( ) 12
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where α is the smoothing constant, taking values between zero and one. 
The process of taking the mean requires no introduction or explanation. However the data of 

which the mean was taken is of greater interest. Unlike the EWMA method which was applied to all 
the data received so far, the mean was taken of a selection of the historical values. The selection 
was made in order to incorporate particular data characteristics of interest without having to 
explicitly model them and parallels some of Stroup’s work which takes the mean of a selection of 
historical values [6, 10]. This selection of data will be explored later in Section 3.2. 

The GLM method makes the same selection of historical values as chosen for the mean 
prediction method and then takes the prediction process a step forward. Using the same approach 
and assumptions as seen in the method suggested by Farrington, Andrews, Beale and Catchpole [5], 
the prediction is made using a generalised linear model and the quasi-Poisson link function. The 
selection of historical data (called baseline values) is used as the response variable. Although 
Farrington et al. proposed the use of one predictor, i.e. the week corresponding to the baseline 
value, initial investigations suggested that this predictor alone did not always perform satisfactorily. 
Often when a year upon year increase was observed within the data, the prediction would 
consistently fall below the observed values and so fail to properly pick up on the pattern of change 
in overall level. In order to correct for this problem, two further predictors were explored. 

First, the introduction of a linear year term in addition to the weekly term as a predictor. The 
second possible solution to this problem stems from incorporating a yearly term via five indicator 
variables representing the five baseline years. For the predictions, removing the indicator variable 
for the most recent of baseline years and setting the other indicator variables to be zero, results in 
predictions that are biased towards the most recent information but still impacted on by that of 
previous years. In order to attempt to reduce the effect of historical outbreaks, Farrington et al. re-
weight the GLM so as to down-weight those baseline values with large residuals. 

ZIP modelling is again a regression based approach but instead of making the assumption that 
the data comes from a quasi-Poisson distribution, the data is assumed to come from a distribution 
that is similar to a Poisson distribution but with more zeros than would be expected under normal 
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Poisson structures [11-13]. This sort of distribution theoretically fits in much more accurately with 
what is expected of the largest section of SCIEH’s collected data, i.e. organisms that have a rate of 
less than one count per week. 

3.2. CHOICE OF HISTORICAL DATA 

The possible choices of historical data to be used as the basis of any predicted value fall into 
two different categories. The first choice is to make use of all the historical values observed, 
however this approach was only utilised by the EWMA prediction method. The alternative strategy 
that was used for the remaining prediction methods, was to reduce the amount of data that 
contributes to a prediction by taking only a selection of the historical data, but in that selection 
aiming to improve the prediction ability by isolating data of specific interest. This approach has 
been used in a variety of published work, including Farrington et al. [5] and Stroup et al. [6, 10]. 

The choice made by Farrington et al. [5] of a seven week window of data centred on the 
current week’s position within the year and applied over the past five years has both parsimony and 
simplicity about the manner in which it addresses its aims. The act of choosing a window of data 
allows for the incorporation of a seasonal effect through the data choice rather than explicit 
modelling. The length of window has been chosen in such a way as to enable flexibility over the 
exact positioning of the seasonal pattern, i.e. if a seasonal peak were to move slightly from year to 
year the window is sufficiently wide in order to still capture a seasonal pattern that remains 
relevant. Taking the last five years together allows, in part, for fluctuations across the years and in 
particular means that an outbreak in the last year will not have as detrimental effect as would be the 
case if only the previous year’s data were used. The choice of using historical data from only the 
last five years crucially also makes a clear decision regarding the expiry time of the data, i.e. data 
that are more than five years old are likely to be less relevant to making predictions for the current 
time period due to such factors as increased/decreased organism occurrences, changes in the 
reporting system, and changes in the classification of organisms. Practitioners have accepted this to 
be pragmatic in the construction of an exception reporting system. This choice of 35 historical, or 
baseline, values was therefore used in conjunction with the mean, GLM and ZIP prediction 
methods. 

4. RESULTS AND GENERAL FINDINGS 

Initially using the simulated data, all of the prediction methods outlined above were tested on 
each combination of data characteristics mentioned in Section 2. For both the GLM and ZIP 
prediction methods, each linear combination of predictors was individually tested. Each method was 
evaluated on its ability to find and match the patterns within the data presented. Due to the number 
of combinations of generated data patterns and prediction methods, it was necessary to perform this 
evaluation numerically as well as visually, utilising correlograms of the resultant differences 
between the observed and predicted values. Just as before, these correlograms could be used to pick 
up on any remaining trend or seasonal pattern and the effect of outbreaks lying in the historical data 
could be visually examined in the differences. Once a decision had been made on the basis of the 
simulated data, this decision was ratified using the real rather than simulated data. 
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It was found that ultimately the GLM approach to prediction excelled among the prediction 
methods. While the ZIP method often worked equally well, its much greater computational 
demands meant that it could not be usefully scaled up for application on large numbers of 
organisms. Equally, although the EWMA approach often worked very well when examined solely 
on a numerical basis, visual examination of the observed and predicted values highlighted the fact 
that along with accurately matching trend or seasonality in the data, it would also ‘match’ any 
outbreaks seen and thus make the outbreaks nearly impossible to detect via the differences between 
the observed and expected values. 

Although it was initially hoped that one prediction method would be found that outperformed 
the others in all circumstances, it instead transpired that two different GLM prediction methods 
were necessary. For those organisms with a reporting rate less than or equal to five, the systematic 
component of the log-linear model was 

log(count) = α + β*week + γ1*baseline year 1 + γ2*baseline year 2 
+ γ3*baseline year 3 + γ4*baseline year 4 

where α, β, γ1, γ2, γ3 and γ4 are all constants, week takes an integer value from the interval [-3,3] to 
represent from which position within the seven-week window cast over the historical data the 
baseline count comes and, for example, baseline year 1 is an indicator variable whose value is one if 
the baseline count comes from the earliest of the five baseline years and is of zero otherwise. 
Complementing this, for those organisms with a reporting rate greater than five, the systematic 
component of the log-linear model was 

log(count) = α + β*week + γ* year 

where γ is a constant and year is the year from which the baseline count comes.  
As was stated earlier, this choice of prediction scheme was ratified using the 105 ‘real’ data 

sets. Two examples are shown for illustration of the prediction scheme in practice: Salmonella 
enteritidis and Haemophilus influnzae, the first having a reporting rate just below 30 and the second 
with a reporting rate of 2.2. Figures 1 and 2 show the plots for each of these organisms in turn. The 
first plot in each figure is of the observed reports collated by SCIEH between 1995 and 2001 with 
the predicted values for each week plotted with a dashed line. The second plot in Figure 1 shows the 
differences between these observed and expected values using the log-linear prediction model, and 
the last plot in each figure is the correlogram of these differences. While the organism data 
presented are very different, in each case the prediction model is seen to pick up the overall patterns 
within the data and produce predicted values that, when subtracted from the observed counts, leave 
behind the main data points likely to be of interest to an exception reporting system. The 
correlograms of these differences then highlight the removal of both trend and seasonality from 
within the data. 

Across the range of 105 organisms tested, it was found that the selected prediction methods 
performed well in light of the data presented to them and for only 1 out of 105 organisms was there 
evidence of the prediction model being clearly inadequate, namely Hepatitis C. 

 

 MI - 72 



MEDICAL INFORMATICS 

5. CONCLUSION 

As the first component of an exception reporting system, a prediction method was sought that 
addressed five key competencies: 
1) the ability to deal with the necessary range of organism reporting rates; 
2) the ability to accommodate a trend within the data; 
3) the ability to accommodate a seasonal pattern within the data; 
4) the ability to handle outbreaks occurring in the historical data without particular detriment; 
5) the ability to act without excessive computing cost and complexity. 

Using both simulated and real data from the SCIEH, it transpired that not one, but two 
prediction methods were required due to their differing behaviour under varying underlying 
reporting rates. These two chosen prediction methods will now be used to produce expected values 
for further work developing an exception reporting system, i.e. the comparison between the 
observed and expected values that will form the basis of alarm decisions. 

Salmonella enteritidis
Observed Reports

Differences

Correlogram of Differences

Fig.1. Salmonella enteritidis plots 
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Fig.2. Haemophilus influenzae plots 
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