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SWITCHING MEDIAN FILTER WITH A LOCAL ENTROPY CONTROL 

This paper presents a new switching median filter utilising local contrast entropy of the samples inside the 
filtering window. The proposed method is fully adaptive, it requires no optimisation and eliminates the main 
disadvantages of the local contrast probability based switching median. Excellent performance of the proposed 
method is a result of the successful analysis of input samples, as the local contrast entropy concept is able to 
efficiently differentiate between outliers and desired edge samples. 

1. INTRODUCTION 

In the past, many non-linear filtering techniques [1,9,11] have been proposed for impulsive 
noise removal. Efficient non-linear filters should be able to remove image noise and highlight the 
edges, while being computationally efficient. The first two requirements correspond to optimal 
trade-off between the noise attenuation and the edge preservation. It means that it is necessary to 
analyse high-frequency components and divide the atypical image samples into two classes: edges 
(desired samples) and noisy elements. 

In noisy environments, the success of searching for an original depends on the complexity of 
the original image, the nature of the corruption process and also on the adopted measure of the 
solution accuracy [1],[13]. It is also necessary to respect conditions and assumptions of the problem 
and statistical and deterministic aspects of noise process and designed filters [10]. 

If the noise process is characterised by random impulsive changes of image elements [1],[2], 
such as bit errors and random-valued impulsive noise, the most popular and efficient filtering tool is 
provided by a class of median based filters [11],[12],[14]. These nonlinear filters based on ordering 
operation provide robust estimates necessary in real applications with varying image and noise 
statistics. Moreover, these filters can be simplified to binary operations [1],[7],[8], which are fast 
and easy to implement [4],[8]. 
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2. MEDIAN FILTERS AND THEIR EXTENSIONS 

Let 1 2{ , ,..., }Nx x x

( 1) / 2Nx +

 be a discrete-time continuous-valued input set determined by a filter window 
positioned at  and 

 (1) (2) ( )... Nx x x≤ ≤ ≤  (1) 

be an ordered set, so that ( ) 1 2{ , ,..., }i Nx x x x∈ , for 1,2,..., .i N=  
The well-known median filter (MF) [12] is defined by 

  (2) 1 2 (( 1) / 2){ , ,..., }N Ny med x x x x += =

where  is the median operator,  is a the number of samples in the filtering window and 
 is the central sample from the ordered sequence. 
med

)

N
(( 1) / 2Nx +

Because the median filter introduces too much smoothing into the image, which results in a 
blurring, a number of median extensions have been developed [1],[9],[11],[12]. 

In this paper we will make use of the lower-upper-middle (LUM) smoothers [1],[6],[9] and 
weighted median (WM) filters [1],[9],[12],[13],[14] which are characterised by improved 
preservation capability and will develop a filter design with more degrees of freedom than that of 
the MF. 

The LUM smoother of the size  is defined as N

 { }( ) ( 1) / 2 ( 1), ,k N N ky med x x x+ − +=  (3) 

where  is the filter output dependent on the parameter y 1,2,..., ( 1) / 2.k N= +

( )k

 The LUM smoothing 
function is created by the comparison of the lower x  and upper ( N kx 1)− +  order statistic with 
the central input sample . ( 1) / 2Nx +

Let each input sample ix  be associated with the real valued weight , for  The 
WM output is the sample 

iw 1,2,..., .i N=

1 2, ,..., }Nx x{y x∈  minimising the expression: 

 
1

( )
N

i
i

L y w y x
=

i= −∑  (4) 

In order to adapt the behaviour of the WM filters to varying signal and noise statistics, in [14] 
optimisation algorithms based on linear (LWM) and sigmoidal approximations (SWM) of the sign 
function have been summarised. 

3. LOCAL CONTRAST PROBABILITY APPROACH 

Another way to restrict the filter effect only to corrupted samples is related to the adaptive 
median filtering. In this way [2],[3],[5] the median filter is applied to noisy samples, and non-
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corrupted (desired) samples remain unchanged. In order to detect impulses, the local contrast 
probability approach have been introduced in [3]. 

Let 1 2{ , ,..., }Nx x x  be the set of grey-scale samples inside the filter window of a finite size .N  
Let us consider that each input sample ix , for 1,2,..., ,i N=  is associated with its contrast  derived 
by the Weber-Fechner law [3]: 

iC

 i i
i

x
C

μ
μ μ
− Δ

= =  (5) 

where  is the gradient level and iΔ μ  is the mean of the input set 1 2{ , ,..., }.Nx x x  
Thus, the local contrast probability (LCP) [3] is given by 
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Any sample ix , for  inside the filter window is considered as noise, if its 
associated local contrast probability is greater than or equal to the threshold value. In terms of the 
probability measure 

1,2,..., ,i = N

iP  related to the difference of the input sample ix  to other samples inside the 
filter window (all the local contrasts are equally distributed), the threshold contrast probability CP  
corresponding to a filter window has been introduced in [3]. 

Referring to the sample under consideration, i.e. the central sample  of the filter 
window, the central sample  is considered as an outlier, when the associated local contrast 
probability  is greater than or equal to the threshold local probability 

( 1) / 2Nx +

( 1) / 2Nx +

( 1) / 2NP +

 1/CP N=  (7) 

This comparison forms a simple definition of the adaptive LCP median filter: 

  (8) 1 2 ( 1) / 2

( 1) / 2

{ , ,..., } if  
otherwise

N N

N

med x x x P P
y

x
+

+

≥⎧
= ⎨
⎩

C

CIf the inequality ( 1) / 2NP P+ ≥  is satisfied, the central sample is considered as an outlier and the 
output  of the adaptive median filter will be the median of the input set y 1 2{ , ,..., }.Nx x x  Otherwise, 
the central sample  has the desired features and will remain unchanged.  ( 1) / 2+Nx

4. PROPOSED ENTROPY SWITCHING MEDIAN FILTER 

The no adaptive threshold probability CP  represents the main disadvantage of the LCP 
approach that can fail especially at image edges, because in the case of samples lying at the image 
edges, these samples can be considered as noise. In general, the filtering of edge points is 
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accompanied by some undesired effects such as blurring and edge jittering. Thus, the most valuable 
features may be significantly degraded by the filtering process. 

Let us consider the input set 1 2{ , ,..., }Nx x x , such that each input sample ix , for  is 
associated with the local contrast probability 

1, 2,..., ,i N=

iP  given by (6). Using the entropy definition applied 
to the input set 1 2{ , ,..., },Nx x x  input samples contribute to the entropy defined by 

  (9) ∑
=

−=
N

i
ii PPH

1
log

where iP  is the local contrast probability associated with the input sample ix  and  is the window 
size. 

N

In terms of the entropy concept (9), each input sample ix  is also associated with the local 
contrast entropy  defined as: iH

 ilogi iH P P= −  (10) 

Our purpose is to provide the adaptive threshold control of the LCP approach. Because each 
local contrast probability iP  given by (6) is always constrained to be a value between 0 and 1, the 
adaptive threshold of our approach should be rescaled to the same interval. 

Let us assume that each sample ,ix , for 1,2,...,i N=  is associated with the adaptive threshold 
iβ  expressed as the rate of the local contrast entropy  defined by (10) and the overall entropy  
 (9) of the input set 

iH
H 1 2{ , ,..., }.Nx x x  So, the adaptive threshold iβ  is given by 
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In the same way as (5), the output of the entropy based median filter is given by 

  (12) 1 2 ( 1) / 2 ( 1) / 2

( 1) / 2

{ , ,..., } if  
otherwise

N N N
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where ( 1)/2Nβ +  is the adaptive threshold associated with the central sample  ( 1)/2.Nx +
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(a)    (b)       (c)           (d)

(e)    (f)       (g)           (h)  

Fig.1. Illustration of the achieved results: (a) test image Lena, (b) test image Bridge,  
(c) detail of the test image Bridge, (d) image corrupted by 5% impulsive noise,  

(e) median output, (f) SWM output, (g) LCP median output, (h) proposed entropy median output 

5. EXPERIMENTAL RESULTS 

We tested the performance of the presented methods using the standard test images Lena and 
Bridge (Fig.1a,b) corrupted by random valued impulsive noise [1] (Fig. 2d and Fig. 4b) with the 
impulsive probability pυ  ranged from 0pυ =  to 0.15pυ =  with a step size of 0.01. This random 
valued impulsive noise is defined as 

 
with probability  1

with probability      i
i po

p
x υ

υυ

−
=
⎧
⎨
⎩

 (13) 

where ix  is the noisy image sample,  describes the sample original image, i  denotes the sample 
location, 

io
υ  is the random value from <0,255> and pυ  is the impulse probability. Note that 

impulsive noise frequently occurs as bit errors  

 * with probability  1

with probability       1
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 (14) 

where pυ  is the bit change probability,  and  are binary values {0,1} of -bit original sample 
 and noisy sample 

m
ik * m

ik B

io ix  given by 

 1 1 2 2 12 2 ... 2B B B
i i i i io k k k k− − −= + + + + B  (15) 
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 * 1 1 * 2 2 * 1 *2 2 ... 2B B B B
ii i i ik k k k− − −= + + + +  (16) x
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Fig.2. Dependence of the MAE criteria on the noise corruption pυ  for the test images Lena (a) and Bridge (b). 
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Fig.3. Dependence of the MSE criteria on the noise corruption pυ  for the test images Lena (a) and Bridge (b). 

In this work, the measure of the image degradation is expressed through two objective criteria 
[6] the mean absolute error (MAE) and the mean square error (MSE). The MAE criteria expresses 
the signal-detail preservation, whereas the MSE is a measure of the noise attenuation capability: 

 
1 2
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1MAE
K K
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o x
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where  is the original image, io ix  is the filtered (noisy) image, i , for 1 21,2,..., ,i K K=  denotes 
the sample position in a 1 2K K×  digital image. 
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(a)    (b)     (c)            (d)  

Fig.4. Zoomed results: (a) part of the test image Lena, (b) image corrupted by 2% impulsive noise,  
(c) median output, (d) proposed entropy median output 

Tab.1.  Achieved results using the test image Lena. 

Impulsive Noise 5% 10% 15% 
Method / Criteria MAE MSE MAE MSE MAE MSE 

Noisy 3.540 374.3 7.018 759.1 10.201 1093.8 
median (MF) 4.563 85.4 4.888 94.3 5.184 106.5 
LUM k = 4 2.711 48.3 3.059 59.6 3.514 83.3 

LWM 2.918 51.2 3.261 62.2 3.670 83.2 
SWM 2.033 34.3 2.488 53.2 3.255 103.3 

LCP median 2.650 66.5 2.775 76.1 3.108 98.9 
entropy median 1.714 53.8 1.892 63.5 2.390 87.3 

 

Tab.2.  Achieved results using the test image Bridge. 

Impulsive Noise 5% 10% 15% 
Method / Criteria MAE MSE MAE MSE MAE MSE 

Noisy 3.568 398.9 7.221 807.6 10.646 1202.5 
median (MF) 7.644 157.2 8.042 173.7 8.483 191.9 
LUM k = 4 4.552 88.3 5.097 112.6 5.698 140.2 

LWM 4.747 91.5 5.283 115.2 5.851 140.6 
SWM 3.667 75.7 4.350 108.9 5.201 161.8 

LCP median 4.667 121.0 4.856 139.1 5.268 165.3 
entropy median 3.193 95.6 3.294 111.6 3.804 140.9 

 
The new filter provides excellent improvement (Figs.1-4, Tabs. 1-2) in comparison with some 

relevant techniques such as standard median filter, LUM smoother and LCP median. This is also 
confirmed by the results depicting the zoomed parts of images (Fig.1 and Fig.4). The proposed 
method achieves excellent results especially in terms of MAE criteria that reflects the capability of 
the filter to preserve the image-details. It also provides robust noise attenuation, because the 
impulse detection characteristics of the proposed entropy median are sufficiently precise. In 
addition, the proposed method may also outperform (Fig.2 and Fig.3) the performance of optimal 
filters such as LWM and SWM, especially for highly corrupted images. 
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Although the proposed entropy median achieves worse results for small degree of the noise 
corruption than that of the optimised LWM and SWM filters, it does not require the optimisation 
procedure. Therefore, the proposed method represents more robust, useful and attractive approach 
than the optimised WM filters. 

6. CONCLUSION 

The proposed local entropy based adaptive median filter improves the preserving capability of 
the standard median filter while retaining its robust noise attenuation characteristics. The proposed 
method is computationally attractive, fast and allows optimal filtering to be performed in 
environments corrupted by bit errors and outliers. 
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