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VACCINATION PROGRAMS AGAINST MUMPS IN THE UNITED KINGDOM 

This paper deals with minimum elimination vaccination programs for mumps in the UK. A partial 
differential equation compartmental model is used to describe the spread of the disease. Pre-vaccination age-
structured serological data is used to estimate the force of infection in the absence of immunization. 
Homogeneous, proportional and symmetric mixing are considered. Using the equilibrium equations, for each 
mixing assumption estimates of the basic reproduction number R0 and the minimum elimination immunization 
proportions for single age and two age vaccination programs are presented. 

1. INTRODUCTION 

Mumps is an acute viral disease characterized by fever, swelling and tenderness of one or 
more salivary glands, usually the parotid and sometimes the sublingual or sub maxillary glands. 
Orchitis, which is inflammation of the testicles characterized by pain and a sensation of weight, 
usually unilateral, occurs in 20-30% of post pubertal males and oophoritis (inflammation affecting 
an ovary) in about 5% of females after puberty, sterility is an extremely rare sequel. Mumps is 
recognized less regularly than other common diseases of childhood, such as measles and chicken-
pox, although serological studies show that in the absence of immunization more than 85% of 
people will have had mumps by the time that they reach adulthood. About one-third of exposed 
susceptible persons have in apparent infections. Most cases in children less than two years of age 
are sub clinical. The majority of infections occur in winter and spring [2]. 

Mumps is spread by direct contact with the saliva of an infectious person and by droplet 
spread. The incubation period is about 12 to 25, commonly 18, days. The virus has been isolated 
from saliva from 6 to 7 days before overt parotitis to up to 9 days after, exposed non-immune 
persons should be considered as infectious from the 12’th to the 25’th day after exposure. 
Maximum infectiousness occurs about 48 hours before the onset of illness [2]. Susceptibility is 
general. Immunity is generally lifelong and develops after in apparent as well as clinical infection. 
To the best of our knowledge the strength of immunity developed is the same after in apparent as 
after clinical infection and our models will assume this. Most adults, particularly those born before 
1957, are likely to have been infected naturally and may be considered immune even if they did not 
have recognized disease. Live attenuated vaccine is available either as a single vaccine, or in 
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combination with rubella and measles live virus vaccines (MMR). At the moment mumps is an 
endemic disease in the UK with generally small seasonal outbreaks [8]. 

2. MATHEMATICAL MODEL 

Recall that mumps is not recognized as consistently as other common childhood diseases. 
Consequently case notifications are not very reliable and should not be used. The way in which the 
incidence of serious symptoms of the disease change with age can affect the accuracy of case report 
notification. Generally speaking for most childhood diseases there is under-reporting of cases, 
especially at larger ages and this strengthens the decision not to use case report notifications as data 
for our model. If an infant or young child has a mild dose of infection they are more likely to be 
taken to see a doctor than school-age children or adults who have daytime commitments. 

Farrington [4] gives a large sample of age-structured serological data for mumps. This 
serological data was collected in five public health laboratories (Ashford, Bristol, Leeds, 
Manchester and Preston). Serum samples from 8,924 persons aged 1 to 99 were tested for 
antibodies to measles, mumps and rubella. Serological status, age and sex were recorded for each 
person. The samples were obtained from residues of specimens submitted for routine diagnostic 
examination. An updated version of this data is used for the estimation of the age-dependent force 
of infection in the absence of vaccination λ0(a). This improved version was sent to us by Farrington 
[5] and is shown in Table 1. In the improved dataset the samples had been retested in order to 
eliminate the inaccuracies in the original dataset. The methods used are based on Keiding’s non-
parametric model [9] rather than Farrington’s parametric model [4] for the force of infection. In our 
basic age-structured model for the spread of disease the population amongst whom the infection 
spreads is divided into classes of susceptible, infected and immune individuals. Every individual is 
born into the susceptible class. At some stage he or she catches the infection and passes through a 
short infectious period before becoming permanently immune. 

Since we consider that the problem is age-structured, partial differential equations must be 
used to describe the spread of the disease. Let x(t,a) denote the density with respect to age of the 
number of susceptible at time t. This means that  

 ∫
2

1
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A

A
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is the actual number of susceptible individuals between ages A1 and A2 at time t. Similarly let 
y(t,a,c) denote the density with respect to age a, and elapsed time since infection, c, of the number 
of infected individuals at time t.  
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Tab.1. Age-serological data: Age of individuals, number tested at that age and number seropositive at that age  
(Farrington, [5]). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AGE 
(YEARS) 

NUMBER 
TESTED 

SERO- 
POSITIVE 

AGE 
(YEARS) 

NUMBER 
TESTED 

SERO- 
POSITIVE 

 1  407  47  50  33  29 
 2  292  43  51  24  23 
 3  332  129  52  29  26 
 4  368  189  53  20  19 
 5  421  276  54  25  21 
 6  330  245  55  23  21 
 7  292  231  56  29  25 
 8  257  206  57  19  18 
 9  312  271  58  31  29 

 10  304  260  59  17  14 
 11  282  239  60  12  10 
 12  320  281  61  9  8 
 13  313  280  62  18  16 
 14  366  323  63  16  15 
 15  116  104  64  12  12 
 16  121  102  65  21  20 
 17  148  135  66  21  20 
 18  196  173  67  9  8 
 19  210  190  68  9  8 
 20  159  147  69  13  13 
 21  160  146  70  9  7 
 22  204  188  71  13  12 
 23  170  155  72  7  6 
 24  170  155  73  13  13 
 25  180  176  74  12  10 
 26  177  164  75  11  9 
 27  179  168  76  19  15 
 28  150  131  77  7  6 
 29  147  129  78  8  6 
 30  120  104  79  8  7 
 31  122  108  80  13  9 
 32  104  91  81  13  10 
 33  95  89  82  10  7 
 34  82  73  83  7  5 
 35  78  71  84  6  5 
 36  67  63  85  8  5 
 37  65  58  86  3  3 
 38  72  59  87  7  6 
 39  47  46  88  1  1 
 40  62  59  89  1  0 
 41  55  53  90  1  1 
 42  43  41  91  2  2 
 43  37  34  92  0  0 
 44  40  35  93  0  0 
 45  45  40  94  1  1 
 46  33  31  95  2  1  
 47  32  30  96  0  0 
 48  30  28  97  0  0 
 49  38  37  98  1  1 

    99  1  0 
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This means that the actual number of infected individuals between ages A1 and A2 with elapsed 
times since infection between C1 and C2 at time t is 

 .),,(2
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Also λ(t,a) denotes the force of infection which depends on the time t and the age a of the 
susceptible individual. 

If we assume that the contact rate (more accurately the contact rate pertaining to potential 
infection transmission) β(a,a’) between a susceptible of age a and an infective of age a’ is of the 
form κb(a,a’)/N where N is the total population size and κ denotes an average contact rate, then the 
partial differential equations which describe the spread of the disease are: 
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where ϕ(a), γ(c) and μ(a) denote respectively, the age-dependent vaccination rate, the rate at which 
an individual who has been infectious for time c becomes immune and the age-dependent death 
rate. The boundary conditions for these equations are 

  x(t,0) = ν, y(t,0,c) = 0 and y(t,a,0) = λ(t,a)x(t,a). 

Let f(c) denote the probability that an individual who has had the disease for time c is still 
infectious. Then λ(t,a) is given by the equation 
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L is life expectancy at birth and the model assumes that individuals live up to age L and then die at 
this fixed age. Here ν is the total birth rate which is assumed to be constant. The model is explained 
further in [3] and used to evaluate UK rubella vaccination programs in [7]. Similar models are 
discussed in [1]. 

We divided the population into four age classes roughly corresponding to pre-school children, 
young schoolchildren, elder schoolchildren and adults. After that we estimated the basic 
reproduction number R0 for the different mixing assumptions and the possible divisions of the 
population into age classes. When estimating the elimination vaccination proportions we simply set 
Rϕ = 1, since this is the critical value of Rϕ which must be exceeded for the disease to persist in the 
population. These proportions depend on the age at which susceptible individuals are vaccinated, 
the vaccine efficacy and whether a one stage or two stage vaccination campaign is used. A one 
stage vaccination campaign means that we are continuously vaccinating a constant proportion ϕ of 
the population at a fixed age a. A two stage vaccination campaign means that we vaccinate a 
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proportion ϕ1 at age A1 and a proportion ϕ2 at age A2. We shall examine both cases since both one 
and two stage vaccination campaigns are commonly used [6]. 

The age-dependent force of infection λ0(a) in the absence of vaccination was estimated by 
Keiding’s non-parametric likelihood method. A problem which arises is the fact that our data are 
discrete points and so they produce a discrete probability distribution whereas we need to have a 
smooth density in order to differentiate it and so estimate the pre-vaccination force of infection. A 
smoothing technique needs to be introduced to overcome this problem. Greenhalgh and Dietz [6], 
Keiding [9] and Groeneboom (discussion of [9]) also deal with this issue. As many cases of the 
disease occur in childhood and far fewer in adults it is desirable to use a variable bandwidth small at 
small ages, but large for larger ages. We experimented with several bandwidths and chose 5 years 
up to the age of 15 years and 15 years thereafter which appeared to be the best. The age-dependent 
death rate μ(a) was estimated from data taken from Preston, Keyfitz and Schoen [10]. 

3. NUMERICAL RESULTS 

3.1. HOMOGENEOUS MIXING 

Homogeneous mixing means that β(a,a’) = β, independent of a and a’. Although 
homogeneous mixing does not represent the real situation of how mumps spreads it is still useful to 
have some results for homogeneous mixing, in order to compare them with the results from other 
mixing assumptions. Table 2 gives some indicative values of the basic reproduction number R0 

when we use different variable bandwidths. 

Tab.2. Estimated value of R0 for variable bandwidths used. 

Case b1 
(years)

b2 
(years)

Age of 
division

0R̂  

A 
B 
C 

1 
5 
5 

15 
15 
15 

15 
15 
25 

5.534
5.018
4.845

 
Rφ is estimated using the formula 
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where and  [6]. ∫=Φ
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)()( duuM 0λ  is the mean pre-vaccination force of 

infection in [0,L]. To estimate R0 we set ϕ = 0. We can use Rϕ to estimate the minimum elimination 
vaccination proportions for mumps in the UK using a one stage and a two stage vaccination 
strategy. The results are shown in Figure 1. For the two stage strategy we take the ages A1 = 2 years 
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and A2 = 5 years. A1 = 2 years is good as individuals are not then protected by maternal antibodies 
and A2 = 5 years as children start school then and so it is easy to vaccinate at this age. 
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(i) (ii) 

Fig.1. Variable bandwidth Case B. Estimated minimum coverage proportions: (i) p(a0) assuming vaccination at a fixed 
age a0, (ii) p2 at age A2 = 5 years given a coverage p1 at age A1 = 2 years.  

3.2. PROPORTIONAL MIXING 

A commonly used mixing assumption is proportional mixing. This means that β(a,a’) = βiβj 
for a∈Ii and a’∈Ij. Table 3 gives some indicative values of R0 with different variable bandwidths. 

Tab.3.  Estimated value of R0 for bandwidths used. 

Case b1 
(years)

b2 
(years)

Age of 
division

0R̂  

A 
B 
C 

5 
5 
10 

15 
15 
15 

25 
15 
15 

5.412
5.733
5.235

 
This time Rφ is estimated using the equation 
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0 ξλ  is the estimated pre-vaccination force of infection and  In Figure 2 we 

present the minimum eradication coverage proportions for bandwidth Case B for a one stage and a 
two stage vaccination campaign respectively.  
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Fig.2. Variable bandwidth Case B. Estimated minimum coverage proportions: (i) p(a0) assuming vaccination at a fixed 
age a0, (ii) p2 at age A2 = 5 years given a coverage p1 at age A1 = 2 years.  

3.3. SYMMETRIC MIXING 

Symmetric mixing means that β(a,a’) = β(a’,a) for all a and a’. If we have n age classes I1, I2, 
… In then β(a,a’) is given by an nxn matrix β(a,a’) = βij for a∈Ii and a’∈Ij. (βij) is called the who-
acquires-infection-from-whom (WAIFW) matrix. Symmetric mixing means that βij = βji for all i 
and j. In general we estimate βij from the equilibrium equations for the spread of disease before 
immunization. This gives n equations in n2 unknowns so we make some assumptions about the 
elements of the WAIFW matrix to reduce the number of unknowns to n. This choice is usually 
justified on social or biological grounds. We look at the following mixing matrices: 

 
 Matrix A Matrix B Matrix C  

 β1 β1 β3 β4  β1 β2 β3 β2  β1 β1 β1 β4 
 β1 β2 β3 β4  β2 β2 β2 β2  β1 β2 β3 β4 
 β3 β3 β3 β4  β3 β2 β4 β4  β1 β3 β3 β4 
 β4 β4 β4 β4  β2 β2 β4 β4  β4 β4 β4 β4 

 
 Matrix D Matrix E 

 β1 β1 β1 β1  β1 β4 β4 β4 
 β1 β2 β2 β2  β4 β2 β4 β4 
 β1 β2 β3 β4  β4 β4 β3 β4 
 β1 β2 β4 β4  β4 β4 β4 β4 

If we define 
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Table 4 gives values of R0 for three different age class divisions and bandwidth Case B (5 
years up to age 15 years and then 15 years thereafter). 

Tab.4.  Value of the basic reproduction number for different age divisions and for the different configurations of the 
WAIFW matrix. 

 Matrix 
Age Division A B C D E 

0-4, 5-10, 11-15, 16-99 
0-4, 5- 9, 10-15, 16-99 
0-3, 4- 6, 7 -10, 11-99 

4.876
4.877
4.609

4.773
4.775
4.609

xxxxx
xxxxx
xxxxx

4.525 
4.365 
xxxxx

xxxxx 
xxxxx 
xxxxx 

 
In the table a ‘xxxxx’ means that the given mixing matrix and age class division was 

infeasible and gave a negative estimate for one of the βij terms. Again we can use the formula for Rφ 
to estimate the minimum elimination vaccination proportions for mumps in the UK using a one 
stage and a two stage vaccination strategy. The results for Matrix B with a variable bandwidth b1 = 
5 years up to age 15 years and b2 = 15 years thereafter with age division 0-5, 6-10, 11-15 and 16-99 
are shown in Figure 3. 

 
 

0  1  0  2  0  30

0  . 0  

0  . 5  

1  . 0  

 p (a 0) 

age (years)  

0  .0  0  . 5  1  .0  

0  .0  

0  .5  

1  .0  

 p2 

 p1 
 

(i) (ii) 

Fig.3. Estimated minimum coverage proportions: (i) p(a0) assuming vaccination at a fixed age a0, (ii) p2 at age A2=5 
years given a coverage p1 at age A1 = 2 years. 

4. SUMMARY AND CONCLUSIONS 

In this paper we have discussed critical elimination immunization programs for mumps in the 
UK. We described a compartmental mathematical model based on partial differential equations. 
Age-structured serological data was used to estimate the pre-vaccination force of infection. The 
equilibrium versions of the partial differential equations were used to estimate Rφ, the reproduction 
number with constant vaccination program φ, under homogeneous, proportional and symmetric 
mixing assumptions. For each mixing assumption illustrative values for R0, the basic reproduction 
number with no immunization, and the minimum elimination vaccination proportions for one stage 
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and two stage immunization policies were estimated. For symmetric mixing further assumptions 
about the form of the mixing matrix were needed. These results can help us plan and evaluate the 
practical problem of eradicating mumps in the UK by vaccination. 
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