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A DECLARATIVE QUERY LANGUAGE  
FOR PROTEIN SECONDARY STRUCTURES 

Searching proteins on their secondary structures provides a rough and fast method of identification of molecules 
having a similar fold.  Since existing database management systems do not offer integrated exploration methods for 
querying protein structures, the structural similarity searching is usually performed by external tools. This often 
lengthens the processing time and requires additional processing steps, like adaptation of input and output data formats. 
In the paper, we present the extended SQL language, which allows searching a database in order to find proteins having 
secondary structures similar to the structural pattern specified by a user. Presented query language is integrated with the 
relational database management system and it simplifies the manipulation of biological data. 

1. INTRODUCTION 

Secondary structures are valuable source of information regarding the construction of protein 
molecules. This organization level of protein structure allows studying the general shape of proteins and 
the formation of amino acid chain caused by local hydrogen interactions [1-3]. Representing protein 
spatial structures by secondary structure elements gives the possibility to reveal and discover types of 
characteristic spatial elements that are present in the protein conformation [4], [5] – whether there are 
only α-helices or only β-strands in the structure, or maybe the structure is generically differentiated, what 
is the arrangement of these elements – whether they are heavily segregated or appear alternately.  

Secondary structure representation of proteins became very important in the analysis of protein 
constructions and functions. It is frequently used in the protein structure similarity searching, e.g. in [6-9]. 
Observation of three-dimensional protein structure, represented at the level of secondary structures, 
reveals the mutual spatial organization of individual fragments of the protein and provides information on 
the formation of various structural motifs (also known as secondary superstructures) [5]. Moreover, 
observation of protein structures represented by secondary structure elements allows to specify the 
location of functional domains, which are structurally stable protein fragments that can be folded 
independently and usually play a particular role in cellular processes. In Fig. 1 we can observe known 
secondary structure elements: two antiparallel β-strands connected by a short loop in the popular β-hair-
pin motif (Fig. 1a) and spiral α-helices in the structure of a sample protein from the Protein Data Bank 
[10]. 

For scientists that study the structure and function of proteins, it is very important to have the ability 
to search for structures similar to the construction of a given structure. This is usually done by external 
applications, which is a big disadvantage. The main reason of the fact is that data describing protein 
structures are managed by database management systems (DBMSs), which work excellent in commercial 
uses. However, they are not dedicated for storing and processing biological data. They do not provide the 
native support for processing biological data with the use of the SQL language, which is a fundamental, 
declarative way of data manipulation in most database systems [11]. There are just a few solutions that 
allow advanced processing of biological data on the database side. However, they are merely prototypes 
of extensions incorporated into existing DBMSs.  

In the paper, we show our extension to the SQL language that allows querying protein spatial 
structures represented by secondary structure elements. The PSS-SQL language (Protein Secondary 
Structure – Structured Query Languaage) that we have designed and developed supports searching the 
database against proteins having their secondary structures similar to the structure specified in a user’s 
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query. The given structure is represented by the structural pattern. In the PSS-SQL, we offer declarative 
method of protein similarity searching, which is integrated with the database server. 

a)  b)  

Fig. 1. Sample protein spatial structures represented by secondary structure elements: a) two antiparallel β-strands in popular β-hairpin motif, 
b) α-helices in the structure of the protein PDB ID: 1X91 (crystal structure of mutant form A of a pectin methylesterase  

inhibitor from Arabidopsis). 

2. RELATED WORKS 

Having a possibility to store protein structural data in appropriate manner and just submit simple 
queries to a database would be a great asset for many researchers working in the area of protein 
bioinformatics. There are only a few initiatives in the world that develop this kind of solutions. They 
work on different levels of protein structure.  

The ODM BLAST [12] is an example of the successful implementation of the BLAST methods in 
the commercial system and SQL language. The implementation covers declarative similarity searching 
for DNA/RNA sequences and protein primary structures. It works fast, but it does not cover secondary 
structure level. The weakness of the implementation is also the necessity to define a cursor inside the 
query, which complicates the whole construction of the query.  

In [13], authors describe their extension to the SQL language, which allows searching on the 
secondary structures of protein sequences. The extension was developed in Periscope (dedicated engine) 
and in Oracle (commercial database system). In the solution, secondary structures are represented by 
segments of different types of secondary structure elements, e.g. hhhllleee. The disadvantage of the 
solution is the multipart form of the search criteria, which requires hard coding and is not very clear for 
potential users.  

In [14], authors show the Periscope/SQ extension of the Periscope system. Periscope/SQ is a 
declarative tool for querying primary and secondary structures. To this purpose authors introduced new 
language PiQL, new data types and algebraic operators according to the defined query algebra PiOA. The 
PiQL language has many possibilities. However, it can be difficult to use, if someone wants to construct 
complex search criteria containing many consecutive segments of the secondary structures, especially, 
with unidentified length or type.  

In the paper [15], authors present their extensions to the object-oriented database (OODB) by 
adding the Protein-QL query language and the Protein-OODB middle layer for requests submitted to the 
OODB. Protein-QL allows to formulate simple queries that operate on the primary, secondary and tertiary 
level. 

3. DATA FORMAT 

Searching similarities in protein structures by formulating queries in PSS-SQL requires that data 
describing secondary structures of proteins should be stored in a database in a specific format. In the 
presented solution, we assume that protein structures will be represented by sequences of secondary 
structure elements (SSE). Each SSE corresponds to one amino acid in the primary structure. In Fig. 2 we 
show the amino acid sequence of the Zinc transport system ATP-binding protein adcC in the 
Streptococcus pneumoniae and the corresponding sequence of SSEs. Particular elements have the 
following meaning: H denotes α-helix, E denotes β-strand, C (or L) stands for loop, turn or coil. 
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P0A2U6 
ADCC_STRPN 
Zinc transport system ATP-binding protein adcC OS=S treptococcus pneumoniae GN=adcC PE=3 SV=1  
 
MRYITVEDLSFYYDKEPVLEHINYCVDSGEFVTLTGENGAAKTTLIKASLGILQPRIGKVAISKTNTQGKKLRIAYLPQQIASFNAGFPSTV 
YEFVKSGRYPRKGWFRRLNAHDEEHIKASLDSVGMWEHRDKRLGSLSGGQKQRAVIARMFASDPDVFILDEPTTGMDAGSKNEFYELMHHSA 
HHHGKAVLMITHDPEEVKDYADRNIHLVRNQDSPWRCFNVHENGQEVGHA 
 
CCCEEECCCEEECCCCCCEEEEEEECCCCCEEEECCCCCCCHHHHHEEEEECCCCCCCCEEEEECCCCCCEEEEEEHHHHHHHHHCCCCCCE 
EEEECCCCCCCHHHHHCCCCCHHHHHHHHHHHHCCCCCCCCCCCCCCCCHHHHHHHHHHHHCCCCEEEECCCCCCCCCCCCCHHHHHHHHCC 
CCCCEEEEEEECCCCCCCCCCCCCEEEEECCCCCCCEEEECCCCCCCCCC  

Fig. 2. Sample amino acid sequence of the protein Zinc transport system ATP-binding protein adcC  in the Streptococcus pneumoniae with 
the corresponding sequence of secondary structure elements. 

Such a representation of protein structure is very simple in terms of storing the structure in a 
database. Data describing types and location of SSEs in the protein structure may come from different 
sources – they can be extracted directly from the Protein Data Bank [10], taken from systems that classify 
protein structures, like SCOP [16] or CATH [17], or generated using programs that predict secondary 
structures on the basis of primary structures. Nevertheless, they should be represented in the common 
format as a sequence of H, E, C/L symbols. In our research, we store sequences of SSEs in the ProteinTbl 
table of the Proteins database. The schema of the table is presented in Fig. 3. 

id   protID       protAC name             length pr imary          secondary 
---- ------------ ------ ---------------- ------ -- -------------- ----------------
799  ABCX_GUITH   O78474 Probable ATP-... 253    MK KKILEVTNLHA... CCCCEEECCCHHH...
800  1A02_GORGO   P30376 Class I histo... 365    MA VMAPRTLLLLL... CCCCHHHHHHHHH...
808  1A110_ARATH  Q9LQ10 Probable amin... 557    MT RTEPNRSRSSN... CCCCCCCCCCCCC...
809  1A111_ARATH  Q9S9U6 1-aminocyclop... 460    ML SSKVVGDSHGQ... CCCEEEECCCCCC...
810  ABCX_PORPU   P51241 Probable ATP-... 251    MS DYILEIKDLHA... CCCHHHHHHHHHH...  

Fig. 3. Schema of the table storing protein sequences of SSEs. 

Fields of the ProteinTbl table have the following meaning: id – internal identifier of protein in a 
database, protAC – protein Accession Number, protId – protein IDentification in the SwissProt database, 
name – protein name and description, length – protein length in amino acids, primary – primary structure 
of a protein (amino acid sequence), secondary – sequence of secondary structure elements of a protein. 

4. SSE SEGMENTS INDEXING 

Before we start searching proteins that are similar to the specified pattern, we have to build an index 
on the field storing sequences of SSEs. In this phase, we create additional segment table, which is stored 
in the structure of B-Tree clustered index. The segment table (Fig. 4) contains extracted information 
regarding consecutive segments of particular types of SSEs (type), their lengths (length) and positions 
(startPos). The information accelerates the process of similarity searching through the preliminary 
filtering of protein structures that are not similar to the query pattern. In the filtering, we extract the most 
characteristic features of the query pattern and, on the basis of the information in the index, we eliminate 
proteins that do not meet the similarity criteria. In the next phase, proteins that pass the preselection are 
aligned to the query pattern. 

id    protID type startPos length 
----- ------ ---- -------- ------ 
67    3      C    0        3 
68    3      H    3        23 
69    3      C    26       8 
70    3      H    34       12 
71    3      C    46       3 
72    3      E    49       3  

Fig. 4. Part of the segment table. 
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5. PSS-SQL FOR SEARCHING PROTEINS ON SECONDARY STRUCTURES 

Protein Secondary Structure – Structured Query Language (PSS-SQL) extends the standard syntax 
of the SQL language providing additional functions that allow to search protein similarities on secondary 
structures. We disclose two important functions to this purpose: containSequence and sequencePosition, 
which will be presented in the section. However, PSS-SQL covers also a series of supplementary proce-
dures and functions, which are used implicitly, e.g. for extracting segments of particular types of SSEs, 
building additional segment tables, indexing SSEs sequences, processing these sequences, aligning the 
target structures from a database to the pattern, validating patterns, and many other operations. The PSS-
SQL extension was developed in the C# programming language. All procedures were gathered in the 
form of the ProteinLibrary DLL file and registered for the Microsoft SQL Server 2005/2008. 

5.1. PATTERN REPRESENTATION IN PSS-SQL QUERIES 

While searching protein similarities on secondary structures, we need to pass the query structure 
(query pattern) as a parameter of the search process. Similarly to the storage format, in PSS-SQL queries 
the pattern is represented as a sequence of SSEs.  However, the form of the sequence is slightly different. 
During the development of the PSS-SQL functionality we assumed the new extensions should allow users 
to formulate a large number of various query types with different degrees of complexity. Moreover, the 
form of these extensions should be as simple as possible and should not cause any syntax difficulties. 
Therefore, we have defined the corresponding grammar in order to help constructing the query pattern. 

In PSS-SQL queries, the sequence of SSEs is represented by blocks of segments. Each segment is 
determined by its type and length. The segment length can be represented precisely or as an interval. It is 
possible to define segments, for which the type is not important or undefined (wildcard symbol ‘?’), and 
for which the end value of the interval is not defined (wildcard symbol ‘*’).  The grammar for defining 
patterns written in the Chomsky notation has the following form. The grammar is formally defined as the 
ordered quad-tuple <N, Σ, P, S >: 

Gpss = <Npss, Σpss, Ppss, Spss>, 

where the symbols respectively mean: Npss – a finite set of nonterminal symbols, Σpss – a finite set of 
terminal symbols, Ppss – a finite set P of production rules, Spss – a distinguished symbol S ∈ Npss that is the 
start symbol. 

Σpss  = {c, h, e, ?, *, N+} 

Npss  = { <sequence>, <blocks_of_segments>, <segment>, <t ype>, <begin>, <end>, 

    <lenght>, <whole_number_greater_than_zero_and_z ero>, <undetermined>} 

Ppss  = { 

  <sequence> ::= <blocks_of_segments> 

  <blocks_of_segments> ::= <segment> | <segment>, < blocks_of_segments> 

  <segment> ::= <type> (<begin>; <end>) | <type> (< lenght>) 

  <begin> ::= <whole_number_greater_than_zero_or_ze ro>  

  <end> ::= <whole_number_greater_than_zero_or_zero > | <undetermined> 

  <lenght> ::= <whole_number_greater_than_zero_or_z ero> 

  <type> ::= c | h | e | ? 

  <whole_number_greater_than_zero_or_zero> ::= N+ | 0 

  <undetremined> ::= *} 

Spss  = <sequence>  
Assumption:  <begin> <= <end>  
The following terms are compliant with the defined grammar Gpss: 

− h(1;10) – representing α-helix of the length 1 to 10 elements 

− e(2;5),h(10;*),c(1;20) – representing β-strand of the length 2 to 5 elements, followed by α-
helix of the length at least 10 elements, and loop of the length 1 to 20 elements 

− e(10;15),?(5;20),h(35)  – representing β-strand of the length 10 to 15 elements, followed by 
any element of the length 5 to 20, and α-helix of the exact length 35 elements 
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With such a representation of the query pattern, we can start the search process using the 
containSequence and sequencePosition functions. 

5.2. VERIFYING STRUCTURES USING CONTAINSEQUENCE 

The containSequence function allows to check if a particular protein or set of proteins from a 
database contain the structural pattern specified as a sequence of SSEs.  This function returns Boolean 
value 1, if the protein from a database contains specified pattern, or 0, if the protein does not include the 
particular pattern.  

The header of the containSequence function is as follows: 
FUNCTION containSequence 
(  
  @proteinId int,  
  @columnSSeq text,  
  @pattern varchar(4000) 
) RETURNS bit  

The containSequence function takes the following arguments: 
− @proteinId – unique identifier of protein in the table that contains sequences of SSEs (e.g. the id 

field in case of the ProteinTbl), 
− @columnSSeq – database field containing sequences of SSEs of proteins (e.g. secondary), 
− @pattern – pattern that defines the query SSEs sequence represented by a set of segments, e.g. 

h(2;10), c(1;5),?(2;*). 
The containSequence function can be used both in SELECT and WHERE phrases of the SQL 

SELECT statement. Using the function in the SELECT statement allows to display information, whether 
the protein or set of proteins contain a specified pattern. Below, we present an example of using the 
containSequence function in order to verify, whether the structure of the Q9FHY1 protein has the 
structural region containing β-strand of the length 7 to 20 elements, surrounded by two loops, one of the 
length 10 to 20 elements, and second of the length of 1 to 20 elements – pattern c(10;20),e(7;20), c(1;20). 

SELECT id, protID, protAC, name, 
 containSequence(id,'secondary','c(10;20),e(7;20),c( 1;20)') 
 AS containSeq  

FROM ProteinTbl WHERE protAC='Q9FHY1' 
 

Results of the verification are shown in Fig. 5. 

id   protID       protAC   name                                  containSeq 
---- ------------ -------- ------------------------ ------------- ---------- 
964  ABIL4_ARATH  Q9FHY1   Protein ABIL4 OS=Arabido psis thaliana 0   

Fig. 5. Result of the verification for the protein Q9FHY1. 

The following query shows an example of using the containSequence function in order to display, 
whether proteins from the Arabidopsis thaliana species contain the given pattern (containSeq=1) or not 
(containSeq=0). Structural pattern is the same as in previous example. 

SELECT id, protID, protAC, name,  
 containSequence(id,'secondary','c(10;20),e(7;20),c (1;20)')   

 AS containSeq  
FROM ProteinTbl  
WHERE name like '%Arabidopsis thaliana%'  

Results of the search process are shown in Fig. 6. 
id   protID       protAC   name                                  containSeq 
---- ------------ -------- ------------------------ ------------- ---------- 
175  A494_ARATH   P43295   Probable cysteine protei nase A494 OS= 1 
244  A9_ARATH     Q00762   Tapetum-specific protein  A9 OS=Arabid 0 
443  AAH_ARATH    O49434   Allantoate deiminase, ch loroplastic O 1 
522  AASS_ARATH   Q9SMZ4   Alpha-aminoadipic semial dehyde syntha 1 
553  AAT1_ARATH   P46643   Aspartate aminotransfera se, mitochond 1 
560  AAT2_ARATH   P46645   Aspartate aminotransfera se, cytoplasm 1 
...   

Fig. 6. Partial result of the search process for proteins from the Arabidopsis thaliana species. 
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Using the containSequence function in the WHERE clause allows to find proteins that contain the 
specified pattern.  Below is an example of using the function for searching proteins from the Escherichia 
coli that contain the pattern h(5;15),c(3),?(6),c(1;*). 

SELECT id, protID, protAC, name, primary, secondary   
FROM ProteinTbl 
WHERE containSequence(id, 'secondary','h(5;15),c(3),?(6), c(1;*)')=1  

and name like '%Escherichia coli%'   
Results of the searching process are shown in Fig. 7.  

id   protID       protAC   name                    primary                 secondary 
---- ------------ -------- ----------------------- ----------------------- ---------------------------  
1294 ACCA_ECO24   A7ZHS5   Acetyl-coenzyme A ca... MSLNFLDFEQPIAELEAKID... CCCCCCCCHHHHHHHHHHHHHCCH... 
1295 ACCA_ECO57   P0ABD6   Acetyl-coenzyme A ca... MSLNFLDFEQPIAELEAKID... CCCCCCCCHHHHHHHHHHHHHCCH... 
1296 ACCA_ECOHS   A7ZWD1   Acetyl-coenzyme A ca... MSLNFLDFEQPIAELEAKID... CCCCCCCCHHHHHHHHHHHHHCCH... 
1297 ACCA_ECOK1   A1A7M9   Acetyl-coenzyme A ca... MSLNFLDFEQPIAELEAKID... CCCCCCCCHHHHHHHHHHHHHCCH... 
1298 ACCA_ECOL5   Q0TLE8   Acetyl-coenzyme A ca... MSLNFLDFEQPIAELEAKID... CCCCCCCCHHHHHHHHHHHHHCCH... 
1299 ACCA_ECOL6   Q8FL03   Acetyl-coenzyme A ca... MSLNFLDFEQPIAELEAKID... CCCCCCCCHHHHHHHHHHHHHCCH... 
1300 ACCA_ECOLI   P0ABD5   Acetyl-coenzyme A ca... MSLNFLDFEQPIAELEAKID... CCCCCCCCHHHHHHHHHHHHHHHH... 
1301 ACCA_ECOUT   Q1RG04   Acetyl-coenzyme A ca... MSLNFLDFEQPIAELEAKID... CCCCCCCCHHHHHHHHHHHHHHHH... 

 
 

Fig. 7. Partial result of the searching process for proteins from the Escherichia coli having the given structural pattern 
h(5;15),c(3),?(6),c(1;*). 

5.3. LOCATING PATTERNS USING SEQUENCEPOSITION 

The sequencePosition function allows to locate the specified pattern in the structure of a protein or 
group of proteins in a database. Pattern searching is performed with the use of segment table and through 
alignment of protein secondary structures. For this purpose, we have adapted the Smith-Waterman 
alignment method [18]. 
The header of the sequencePosition function is as follows: 

FUNCTION sequencePosition  
( @columnSSeq text,  
 @pattern varchar(4000),  
 @predicate varchar(4000)  
) 
RETURNS @resultTable table  
( proteinId int,  
 startPos int,  
 endPos int,  
 length int,  
 gapsCount int,  
 sequence text 
)  

The sequencePosition takes the following arguments:  
− @columnSSeq – database field that contains sequences of SSEs, e.g. secondary, 
− @pattern – pattern that defines the query SSEs sequence represented by a set of segments, e.g.: 

h(2;10), c(1;5),?(2;*), 
− @predicate – an optional, simple or complex criteria that allow to limit the list of proteins that 

will be processed during the search, e.g.: name LIKE '%phosphogluconolactonase%', 
The sequnecePosition function returns a table containing information about the location of the 

query pattern in the structure of the database protein: 
− proteinId – unique identifier of protein that contains specified pattern; using the identifier we can 

join resultant table with data from other tables, 
− startPos – position, where the pattern starts in the target protein from a database, 
− endPos – position, where the pattern ends in the target protein from a database, 
− length – length of the segment that matches to the given pattern, 
− sequence – sequence of SSEs, which matches to the pattern defined in the query. 

The sequencePosition function is used in the FROM clause of the SELECT statement. The resultant 
table is treated as one of source tables used in query execution. Below, we show an example of using the 
function to localize pattern that contains a β-strand of the length from 1 to 10 elements, optional loop up 



MEDICAL DATA ANALYSIS 

 145 

to 5 elements, α-helix of the length at least 5 elements, optional loop up to 5 elements and β-strand of any 
length – pattern e(1;10),c(0;5),h(5;*), c(0;5),e(1;*). The pattern is searched only in proteins with the 
length exceeding 150 amino acids, which secondary structure was predicted (predicate PE=4). 

SELECT p.protAC AS AC, p.name, s.startPos AS start,  s.endPos AS end, 
sequence 

AS [matched sequence], p.secondary 
FROM ProteinTbl AS p JOIN sequencePosition('secondary', 
 'e(1;10),c(0;5),h(5;*),c(0;5),e(1;*)' , '')  AS s 
ON p.id = s.proteinId 
WHERE p.name LIKE '%PE=4%' AND p.length > 150  

The query produces results as shown in Fig. 8. It should be noted that there may be many ways how 
the pattern can be aligned to the protein structure from a database. The modified Smith-Waterman method 
returns a number of possible alignments based on a value of the internal MPE parameter [21]. As a result, 
in the table shown in Fig. 8 the same protein may appear several times with different alignment 
parameters. 

Predicates that filter the set of rows can be defined in the WHERE clause of the SELECT statement 
or can be passed as the @predicate argument of the sequencePosition function. 

AC       name               start end  matched sequ ence                     secondary 
-------- ------------------ ----- ---- ------------ ------------------------ -------------------------
P75747   Protein abrB OS... 72    107  eeeeeeeeehhh hhhhhhhhhhhhhhheeeeeeee  CCCEEEEEHHHHHHHHHHHHEE...
P75747   Protein abrB OS... 222   245  eeeeehhhhhhh hhhhhhhheee              CCCEEEEEHHHHHHHHHHHHEE ...
P75747   Protein abrB OS... 136   158  eeeeehhhhhhh hhhhcceeee               CCCEEEEEHHHHHHHHHHHHEE ...
P75747   Protein abrB OS... 172   202  eeeeccccchhh hhhhhhhhhhccceeeee       CCCEEEEEHHHHHHHHHHHHEE ...
P75747   Protein abrB OS... 4     32   eeeeehhhhhhh hhhhheeeeeeeeeee         CCCEEEEEHHHHHHHHHHHHEE ...
P75747   Protein abrB OS... 22    43   eeeeeeeeeecc hhhhheeee                CCCEEEEEHHHHHHHHHHHHEE ...
Q54GC8   Acyl-CoA-bindin... 172   197  eeeeeccchhhh hhhhhcccceeee            CCCHHHHHHHHHHHHHHHHCCC ...
P32104   Transcriptional... 185   212  eeeecccchhhh hhhhhhhheeeeeee          CCCCCHHHHHHHHHHHHHHHHH ...
P32104   Transcriptional... 120   144  eeeccccchhhh hhhccccceeee             CCCCCHHHHHHHHHHHHHHHHH ...
P32104   Transcriptional... 98    123  eeeecccchhhh hhhhhhhhhheee            CCCCCHHHHHHHHHHHHHHHHH ...
...  

Fig. 8. Partial result of the search process for the given structural pattern e(1;10),c(0;5),h(5;*),c(0;5),e(1;*). 

However, regarding the query performance, it is better to pass them directly as the @predicate 
argument, when we call the function. This small extension forces the query processor to filter the set of 
proteins before creating the resultant table and before executing the Smith-Waterman method. Therefore, 
we do not waste time for time-consuming alignments that are not necessary in some cases. Sample query 
with filtering criteria specified in the function call, is shown below. 

SELECT p.protAC AS AC, p.name, s.startPos AS start,  s.endPos AS end, sequence 
AS [matched sequence], p.secondary 
FROM ProteinTbl AS p JOIN  
 sequencePosition('secondary','e(1;10),c(0;5),h(5;*) ,c(0;5),e(1;*)' , 
 ' p.name LIKE ''%PE=4%'' AND p.length > 150') AS s  
ON p.id = s.proteinId 

 

6. EFFECTIVENESS AND EFFICIENCY OF PSS-SQL QUERIES 

During the development of the PSS-SQL language we tested the effectiveness of the proposed 
solution and we have performed a set of tests in order to verify the efficiency of queries containing 
different patterns.  

The efficacy of the PSS-SQL queries was successfully confirmed by manual comparisons of the 
results of containSequence and sequencePosition functions to the SSEs sequences stored in the 
ProteinTbl and segments stored in an appropriate segment table. Tests were performed for more than one 
hundred different SSE patterns, having different complexity, containing various numbers of segments, 
described precisely and rough, including SSEs of different types – defined explicitly or using wildcards. 

The efficiency of the PSS-SQL queries was tested on the PC computer with the processor Intel® 
3.2 GHz Core Duo and 2GB of memory. The Proteins database, which was used in tests, contained data 
describing 6 230 primary and secondary structures of proteins, as well as some additional information. 
Primary structures and description of proteins were downloaded from the SwissProt database [19]. 
Secondary structures were generated in the prediction process with the use of the Predator program [20]. 
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The execution time of PSS-SQL queries calling the sequencePosition function, which localizes 
patterns in protein structures, takes from single seconds up to several minutes. It depends on the pattern 
specified in the query. In Fig. 9a we show execution times for queries containing sample patterns: 

− SSE1: h(38),c(3;10),e(25;30),c(3;10),h(1;10),c(1;5),e(5;10) 
− SSE2: e(4;20),c(3;10),e(4;20),c(3;10),e(15),c(3;10),e(1;10) 
− SSE3: h(30;40),c(1;5),?(50;60),c(5;10),h(29),c(1;5),h(20;25) 
− SSE4: h(10;20),c(1;10),h(243),c(1;10),h(5;10),c(1;10),h(10;15) 
− SSE5: e(1;10),c(1;5),e(27),h(1;10),e(1;10),c(1;10),e(5;20) 

The SSE1 pattern represents protein structures with the alternating α-helices and β-strands joined 
by loops. The SSE2 pattern represents protein structure built only with β-strands connected by loops. The 
SSE3 pattern consists of undefined segment of SSEs (? - wildcard). Patterns SSE4 and SSE5 have one 
unique region – h(243) and e(27), respectively. 

We have observed, the execution time tightly depends on the uniqueness of the pattern. The more 
unique the pattern, the more proteins are filtered out based on the segment table, the fewer proteins are 
aligned by the Smith-Waterman method and the less time we need to obtain results. We can see it clearly 
in Fig. 9a for patterns SSE4 and SSE5, having precisely defined, unique regions h(243) and e(27). For 
universal patterns, for which we can find many fitting proteins or multiple alignments, we can observe 
longer execution times of PSS-SQL queries. In such cases, the length of the pattern influences the 
alignment time – for longer patterns we experience longer response times. We have not observed any 
dependency between the type of the SSE and the response time. However, specifying wildcards in the 
pattern increases the waiting period (sometimes up to several minutes). This is typical for standard SQL 
queries in database systems, where execution times are highly dependent on the selectivity of the queries 
and the number of data in a database. 

Additional filtering criteria, which are commonly used in SQL queries, also decrease the execution 
time. In case of the containSequence function, additional filtering criteria can be specified only in the 
WHERE clause.  In case of the sequencePosition function, they can be placed in the WHERE clause or 
passed as the @predicate parameter of the function. However, passing the criteria as parameters is better 
for the performance of PSS-SQL queries. The reason of this is the fact that filtering criteria in the 
WHERE clause are set on the resultant table of the sequencePosition function after it is constructed and 
populated. On the other hand, criteria passed as the @predicate parameter are set before the construction 
of the resultant table. In Fig. 9b we present execution times for PSS-SQL queries using the 
sequencePosition function searching the structural pattern SSE1: h(38),c(3;10),e(25;30), 
c(3;10),h(1;10),c(1;5),e(5;10), with additional filtering predicates defined as the @predicate parameter of 
the function (BUILT-IN) and in the WHERE clause: 

− predicate P1: p.name like ''%Homo sapiens%'', 
− predicate P2: p.name like ''%Homo sapiens%PE=1%'', 
− predicate P3: p.name like ''%Homo sapiens%PE=1%SV=4%'', 
− predicate P4: p.primary like ''%NHSAAYRVDQGVLN%''. 

Additional predicate P1 causes the pattern to be compared only to proteins that act in Homo sapiens 
organisms. In the predicate P2 we added the condition that the candidate proteins must have the Protein 
existence attribute set to Evidence at protein level (PE=1). In predicate P3 we provided additional filter 
for the sequence version SV=4. Finally, predicate P4 sets a simple filter on the primary structure of 
proteins (amino acid sequence). 

Analyzing the execution times of queries with additional predicates in Fig. 9b (BUILT-IN) and 
comparing them to the execution time of the query containing SSE1 pattern in Fig. 9a, we can notice that 
appropriately formulated filtering criteria significantly increase the performance of the search process and 
reduce the search time from several minutes even to several seconds (P3 and P4). It is also worth noting 
that for the analyzed pattern SSE1 we benefit from specifying additional filtering criteria as a parameter 
of the sequencePosition function. Specifying additional criteria in the WHERE clause is not so efficient 
in this case. 
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Fig. 9. Execution times of PSS-SQL queries: a) containing different patterns SSE1-SSE5, b) containing only the SSE1 pattern and various 
filtering predicates P1-P4 passed as a parameter (BUILT-IN) or in the WHERE clause. 

7. DISCUSSION AND CONCLUDING REMARKS 

PSS-SQL presented in the paper provides ready to use and easy search mechanisms that allow to 
find proteins having secondary structure similar to the given pattern. Comparing to existing solutions in 
the area (presented in section 2), the PSS-SQL has similar performance for precise patterns and can be 
slower for universal patterns, since they require many alignment processes. The reason of the fact is that 
PSS-SQL returns many possible solutions for such imprecise patterns. From this point of view, the 
execution times seem to be acceptable. Moreover, the syntax of the PSS-SQL is more transparent to users 
and more flexible in possibilities of defining query patters. The pattern defined in a query does not have 
to be specified strictly. Segments in the pattern can be specified as intervals and they can have undefined 
lengths (users can use the wildcard ‘*’ symbol). Additionally, the PSS-SQL allows to specify patterns 
with undefined types of the SSE (using the SSE type wildcard ‘?’ symbol) or patterns, where some SSE 
segments may occur optionally. Therefore, the search process has an approximate character, regarding 
various possible options for segments matching. Furthermore, the possibility to define patterns that 
include optional segments, allows users to specify gaps in a particular place. 

Integrating methods of protein similarity searching with a database management system makes it 
easy to manipulate biological data without the need for external data mining applications. The SQL 
extension presented in this paper is an example of such integration. There are many advantages of the 
proposed extension.  

First, the logic of data processing is removed from the user application and moved towards the 
database server. The advanced analysis of biological data is then performed while retrieving data from a 
database with the use of PSS-SQL queries. Therefore, the number of data returned to the user and 
network traffic between the server and the user application are much reduced.  

Second, users familiar with the SQL syntax will easily manage to formulate PSS-SQL queries. We 
have designed a simple and understandable SQL extension, and in consequence, a very clear language for 
protein structures. This gives an advantage of the PSS-SQL language over other known solutions. How-
ever, there are many implicit operations that hide behind this simplicity and transparency, such as the 
alignment using the modified Smith-Waterman method, which belongs to the class of dynamic 
programming algorithms.  

Third, as a result of PSS-SQL queries, users obtain pre-processed data. These data can then be used 
in further processing, e.g. users can treat results as strictly selected proteins, which meet specified criteria 
regarding the construction, and will be analyzed in more details. In our research, we use the presented 
extension in the similarity searching of protein tertiary structures. In the process, PSS-SQL queries allow 
us to roughly preselect proteins on the basis of their secondary structures. 
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