
JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 16/2010, ISSN 1642-6037

proteins, secondary structure
protein similarity, query language

Dominika WIECZOREK1, Bożena MAŁYSIAK-MROZEK1, Stanisław KOZIELSKI1,
Dariusz MROZEK1

A DECLARATIVE QUERY LANGUAGE
FOR PROTEIN SECONDARY STRUCTURES

Searching proteins on their secondary structures provides a rough and fast method of identification of molecules
having a similar fold. Since existing database management systems do not offer integrated exploration methods for
querying protein structures, the structural similarity searching is usually performed by external tools. This often
lengthens the processing time and requires additional processing steps, like adaptation of input and output data formats.
In the paper, we present the extended SQL language, which allows searching a database in order to find proteins having
secondary structures similar to the structural pattern specified by a user. Presented query language is integrated with the
relational database management system and it simplifies the manipulation of biological data.

1. INTRODUCTION

Secondary structures are valuable source of information regarding the construction of protein
molecules. This organization level of protein structure allows studying the general shape of proteins and
the formation of amino acid chain caused by local hydrogen interactions [1-3]. Representing protein
spatial structures by secondary structure elements gives the possibility to reveal and discover types of
characteristic spatial elements that are present in the protein conformation [4], [5] – whether there are
only α-helices or only β-strands in the structure, or maybe the structure is generically differentiated, what
is the arrangement of these elements – whether they are heavily segregated or appear alternately.

Secondary structure representation of proteins became very important in the analysis of protein
constructions and functions. It is frequently used in the protein structure similarity searching, e.g. in [6-9].
Observation of three-dimensional protein structure, represented at the level of secondary structures,
reveals the mutual spatial organization of individual fragments of the protein and provides information on
the formation of various structural motifs (also known as secondary superstructures) [5]. Moreover,
observation of protein structures represented by secondary structure elements allows to specify the
location of functional domains, which are structurally stable protein fragments that can be folded
independently and usually play a particular role in cellular processes. In Fig. 1 we can observe known
secondary structure elements: two antiparallel β-strands connected by a short loop in the popular β-hair-
pin motif (Fig. 1a) and spiral α-helices in the structure of a sample protein from the Protein Data Bank
[10].

For scientists that study the structure and function of proteins, it is very important to have the ability
to search for structures similar to the construction of a given structure. This is usually done by external
applications, which is a big disadvantage. The main reason of the fact is that data describing protein
structures are managed by database management systems (DBMSs), which work excellent in commercial
uses. However, they are not dedicated for storing and processing biological data. They do not provide the
native support for processing biological data with the use of the SQL language, which is a fundamental,
declarative way of data manipulation in most database systems [11]. There are just a few solutions that
allow advanced processing of biological data on the database side. However, they are merely prototypes
of extensions incorporated into existing DBMSs.

In the paper, we show our extension to the SQL language that allows querying protein spatial
structures represented by secondary structure elements. The PSS-SQL language (Protein Secondary
Structure – Structured Query Languaage) that we have designed and developed supports searching the
database against proteins having their secondary structures similar to the structure specified in a user’s

1 Institute of Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland.

MEDICAL DATA ANALYSIS

 140

query. The given structure is represented by the structural pattern. In the PSS-SQL, we offer declarative
method of protein similarity searching, which is integrated with the database server.

a) b)

Fig. 1. Sample protein spatial structures represented by secondary structure elements: a) two antiparallel β-strands in popular β-hairpin motif,
b) α-helices in the structure of the protein PDB ID: 1X91 (crystal structure of mutant form A of a pectin methylesterase

inhibitor from Arabidopsis).

2. RELATED WORKS

Having a possibility to store protein structural data in appropriate manner and just submit simple
queries to a database would be a great asset for many researchers working in the area of protein
bioinformatics. There are only a few initiatives in the world that develop this kind of solutions. They
work on different levels of protein structure.

The ODM BLAST [12] is an example of the successful implementation of the BLAST methods in
the commercial system and SQL language. The implementation covers declarative similarity searching
for DNA/RNA sequences and protein primary structures. It works fast, but it does not cover secondary
structure level. The weakness of the implementation is also the necessity to define a cursor inside the
query, which complicates the whole construction of the query.

In [13], authors describe their extension to the SQL language, which allows searching on the
secondary structures of protein sequences. The extension was developed in Periscope (dedicated engine)
and in Oracle (commercial database system). In the solution, secondary structures are represented by
segments of different types of secondary structure elements, e.g. hhhllleee. The disadvantage of the
solution is the multipart form of the search criteria, which requires hard coding and is not very clear for
potential users.

In [14], authors show the Periscope/SQ extension of the Periscope system. Periscope/SQ is a
declarative tool for querying primary and secondary structures. To this purpose authors introduced new
language PiQL, new data types and algebraic operators according to the defined query algebra PiOA. The
PiQL language has many possibilities. However, it can be difficult to use, if someone wants to construct
complex search criteria containing many consecutive segments of the secondary structures, especially,
with unidentified length or type.

In the paper [15], authors present their extensions to the object-oriented database (OODB) by
adding the Protein-QL query language and the Protein-OODB middle layer for requests submitted to the
OODB. Protein-QL allows to formulate simple queries that operate on the primary, secondary and tertiary
level.

3. DATA FORMAT

Searching similarities in protein structures by formulating queries in PSS-SQL requires that data
describing secondary structures of proteins should be stored in a database in a specific format. In the
presented solution, we assume that protein structures will be represented by sequences of secondary
structure elements (SSE). Each SSE corresponds to one amino acid in the primary structure. In Fig. 2 we
show the amino acid sequence of the Zinc transport system ATP-binding protein adcC in the
Streptococcus pneumoniae and the corresponding sequence of SSEs. Particular elements have the
following meaning: H denotes α-helix, E denotes β-strand, C (or L) stands for loop, turn or coil.

MEDICAL DATA ANALYSIS

 141

P0A2U6
ADCC_STRPN
Zinc transport system ATP-binding protein adcC OS=S treptococcus pneumoniae GN=adcC PE=3 SV=1

MRYITVEDLSFYYDKEPVLEHINYCVDSGEFVTLTGENGAAKTTLIKASLGILQPRIGKVAISKTNTQGKKLRIAYLPQQIASFNAGFPSTV
YEFVKSGRYPRKGWFRRLNAHDEEHIKASLDSVGMWEHRDKRLGSLSGGQKQRAVIARMFASDPDVFILDEPTTGMDAGSKNEFYELMHHSA
HHHGKAVLMITHDPEEVKDYADRNIHLVRNQDSPWRCFNVHENGQEVGHA

CCCEEECCCEEECCCCCCEEEEEEECCCCCEEEECCCCCCCHHHHHEEEEECCCCCCCCEEEEECCCCCCEEEEEEHHHHHHHHHCCCCCCE
EEEECCCCCCCHHHHHCCCCCHHHHHHHHHHHHCCCCCCCCCCCCCCCCHHHHHHHHHHHHCCCCEEEECCCCCCCCCCCCCHHHHHHHHCC
CCCCEEEEEEECCCCCCCCCCCCCEEEEECCCCCCCEEEECCCCCCCCCC

Fig. 2. Sample amino acid sequence of the protein Zinc transport system ATP-binding protein adcC in the Streptococcus pneumoniae with
the corresponding sequence of secondary structure elements.

Such a representation of protein structure is very simple in terms of storing the structure in a
database. Data describing types and location of SSEs in the protein structure may come from different
sources – they can be extracted directly from the Protein Data Bank [10], taken from systems that classify
protein structures, like SCOP [16] or CATH [17], or generated using programs that predict secondary
structures on the basis of primary structures. Nevertheless, they should be represented in the common
format as a sequence of H, E, C/L symbols. In our research, we store sequences of SSEs in the ProteinTbl
table of the Proteins database. The schema of the table is presented in Fig. 3.

id protID protAC name length pr imary secondary
---- ------------ ------ ---------------- ------ -- -------------- ----------------
799 ABCX_GUITH O78474 Probable ATP-... 253 MK KKILEVTNLHA... CCCCEEECCCHHH...
800 1A02_GORGO P30376 Class I histo... 365 MA VMAPRTLLLLL... CCCCHHHHHHHHH...
808 1A110_ARATH Q9LQ10 Probable amin... 557 MT RTEPNRSRSSN... CCCCCCCCCCCCC...
809 1A111_ARATH Q9S9U6 1-aminocyclop... 460 ML SSKVVGDSHGQ... CCCEEEECCCCCC...
810 ABCX_PORPU P51241 Probable ATP-... 251 MS DYILEIKDLHA... CCCHHHHHHHHHH...

Fig. 3. Schema of the table storing protein sequences of SSEs.

Fields of the ProteinTbl table have the following meaning: id – internal identifier of protein in a
database, protAC – protein Accession Number, protId – protein IDentification in the SwissProt database,
name – protein name and description, length – protein length in amino acids, primary – primary structure
of a protein (amino acid sequence), secondary – sequence of secondary structure elements of a protein.

4. SSE SEGMENTS INDEXING

Before we start searching proteins that are similar to the specified pattern, we have to build an index
on the field storing sequences of SSEs. In this phase, we create additional segment table, which is stored
in the structure of B-Tree clustered index. The segment table (Fig. 4) contains extracted information
regarding consecutive segments of particular types of SSEs (type), their lengths (length) and positions
(startPos). The information accelerates the process of similarity searching through the preliminary
filtering of protein structures that are not similar to the query pattern. In the filtering, we extract the most
characteristic features of the query pattern and, on the basis of the information in the index, we eliminate
proteins that do not meet the similarity criteria. In the next phase, proteins that pass the preselection are
aligned to the query pattern.

id protID type startPos length
----- ------ ---- -------- ------
67 3 C 0 3
68 3 H 3 23
69 3 C 26 8
70 3 H 34 12
71 3 C 46 3
72 3 E 49 3

Fig. 4. Part of the segment table.

MEDICAL DATA ANALYSIS

 142

5. PSS-SQL FOR SEARCHING PROTEINS ON SECONDARY STRUCTURES

Protein Secondary Structure – Structured Query Language (PSS-SQL) extends the standard syntax
of the SQL language providing additional functions that allow to search protein similarities on secondary
structures. We disclose two important functions to this purpose: containSequence and sequencePosition,
which will be presented in the section. However, PSS-SQL covers also a series of supplementary proce-
dures and functions, which are used implicitly, e.g. for extracting segments of particular types of SSEs,
building additional segment tables, indexing SSEs sequences, processing these sequences, aligning the
target structures from a database to the pattern, validating patterns, and many other operations. The PSS-
SQL extension was developed in the C# programming language. All procedures were gathered in the
form of the ProteinLibrary DLL file and registered for the Microsoft SQL Server 2005/2008.

5.1. PATTERN REPRESENTATION IN PSS-SQL QUERIES

While searching protein similarities on secondary structures, we need to pass the query structure
(query pattern) as a parameter of the search process. Similarly to the storage format, in PSS-SQL queries
the pattern is represented as a sequence of SSEs. However, the form of the sequence is slightly different.
During the development of the PSS-SQL functionality we assumed the new extensions should allow users
to formulate a large number of various query types with different degrees of complexity. Moreover, the
form of these extensions should be as simple as possible and should not cause any syntax difficulties.
Therefore, we have defined the corresponding grammar in order to help constructing the query pattern.

In PSS-SQL queries, the sequence of SSEs is represented by blocks of segments. Each segment is
determined by its type and length. The segment length can be represented precisely or as an interval. It is
possible to define segments, for which the type is not important or undefined (wildcard symbol ‘?’), and
for which the end value of the interval is not defined (wildcard symbol ‘*’). The grammar for defining
patterns written in the Chomsky notation has the following form. The grammar is formally defined as the
ordered quad-tuple <N, Σ, P, S >:

Gpss = <Npss, Σpss, Ppss, Spss>,

where the symbols respectively mean: Npss – a finite set of nonterminal symbols, Σpss – a finite set of
terminal symbols, Ppss – a finite set P of production rules, Spss – a distinguished symbol S ∈ Npss that is the
start symbol.

Σpss = {c, h, e, ?, *, N+}

Npss = { <sequence>, <blocks_of_segments>, <segment>, <t ype>, <begin>, <end>,

 <lenght>, <whole_number_greater_than_zero_and_z ero>, <undetermined>}

Ppss = {

 <sequence> ::= <blocks_of_segments>

 <blocks_of_segments> ::= <segment> | <segment>, < blocks_of_segments>

 <segment> ::= <type> (<begin>; <end>) | <type> (< lenght>)

 <begin> ::= <whole_number_greater_than_zero_or_ze ro>

 <end> ::= <whole_number_greater_than_zero_or_zero > | <undetermined>

 <lenght> ::= <whole_number_greater_than_zero_or_z ero>

 <type> ::= c | h | e | ?

 <whole_number_greater_than_zero_or_zero> ::= N+ | 0

 <undetremined> ::= *}

Spss = <sequence>
Assumption: <begin> <= <end>
The following terms are compliant with the defined grammar Gpss:

− h(1;10) – representing α-helix of the length 1 to 10 elements

− e(2;5),h(10;*),c(1;20) – representing β-strand of the length 2 to 5 elements, followed by α-
helix of the length at least 10 elements, and loop of the length 1 to 20 elements

− e(10;15),?(5;20),h(35) – representing β-strand of the length 10 to 15 elements, followed by
any element of the length 5 to 20, and α-helix of the exact length 35 elements

MEDICAL DATA ANALYSIS

 143

With such a representation of the query pattern, we can start the search process using the
containSequence and sequencePosition functions.

5.2. VERIFYING STRUCTURES USING CONTAINSEQUENCE

The containSequence function allows to check if a particular protein or set of proteins from a
database contain the structural pattern specified as a sequence of SSEs. This function returns Boolean
value 1, if the protein from a database contains specified pattern, or 0, if the protein does not include the
particular pattern.

The header of the containSequence function is as follows:
FUNCTION containSequence
(
 @proteinId int,
 @columnSSeq text,
 @pattern varchar(4000)
) RETURNS bit

The containSequence function takes the following arguments:
− @proteinId – unique identifier of protein in the table that contains sequences of SSEs (e.g. the id

field in case of the ProteinTbl),
− @columnSSeq – database field containing sequences of SSEs of proteins (e.g. secondary),
− @pattern – pattern that defines the query SSEs sequence represented by a set of segments, e.g.

h(2;10), c(1;5),?(2;*).
The containSequence function can be used both in SELECT and WHERE phrases of the SQL

SELECT statement. Using the function in the SELECT statement allows to display information, whether
the protein or set of proteins contain a specified pattern. Below, we present an example of using the
containSequence function in order to verify, whether the structure of the Q9FHY1 protein has the
structural region containing β-strand of the length 7 to 20 elements, surrounded by two loops, one of the
length 10 to 20 elements, and second of the length of 1 to 20 elements – pattern c(10;20),e(7;20), c(1;20).

SELECT id, protID, protAC, name,
 containSequence(id,'secondary','c(10;20),e(7;20),c(1;20)')
 AS containSeq

FROM ProteinTbl WHERE protAC='Q9FHY1'

Results of the verification are shown in Fig. 5.

id protID protAC name containSeq
---- ------------ -------- ------------------------ ------------- ----------
964 ABIL4_ARATH Q9FHY1 Protein ABIL4 OS=Arabido psis thaliana 0

Fig. 5. Result of the verification for the protein Q9FHY1.

The following query shows an example of using the containSequence function in order to display,
whether proteins from the Arabidopsis thaliana species contain the given pattern (containSeq=1) or not
(containSeq=0). Structural pattern is the same as in previous example.

SELECT id, protID, protAC, name,
 containSequence(id,'secondary','c(10;20),e(7;20),c (1;20)')

 AS containSeq
FROM ProteinTbl
WHERE name like '%Arabidopsis thaliana%'

Results of the search process are shown in Fig. 6.
id protID protAC name containSeq
---- ------------ -------- ------------------------ ------------- ----------
175 A494_ARATH P43295 Probable cysteine protei nase A494 OS= 1
244 A9_ARATH Q00762 Tapetum-specific protein A9 OS=Arabid 0
443 AAH_ARATH O49434 Allantoate deiminase, ch loroplastic O 1
522 AASS_ARATH Q9SMZ4 Alpha-aminoadipic semial dehyde syntha 1
553 AAT1_ARATH P46643 Aspartate aminotransfera se, mitochond 1
560 AAT2_ARATH P46645 Aspartate aminotransfera se, cytoplasm 1
...

Fig. 6. Partial result of the search process for proteins from the Arabidopsis thaliana species.

MEDICAL DATA ANALYSIS

 144

Using the containSequence function in the WHERE clause allows to find proteins that contain the
specified pattern. Below is an example of using the function for searching proteins from the Escherichia
coli that contain the pattern h(5;15),c(3),?(6),c(1;*).

SELECT id, protID, protAC, name, primary, secondary
FROM ProteinTbl
WHERE containSequence(id, 'secondary','h(5;15),c(3),?(6), c(1;*)')=1

and name like '%Escherichia coli%'
Results of the searching process are shown in Fig. 7.

id protID protAC name primary secondary
---- ------------ -------- ----------------------- ----------------------- ---------------------------
1294 ACCA_ECO24 A7ZHS5 Acetyl-coenzyme A ca... MSLNFLDFEQPIAELEAKID... CCCCCCCCHHHHHHHHHHHHHCCH...
1295 ACCA_ECO57 P0ABD6 Acetyl-coenzyme A ca... MSLNFLDFEQPIAELEAKID... CCCCCCCCHHHHHHHHHHHHHCCH...
1296 ACCA_ECOHS A7ZWD1 Acetyl-coenzyme A ca... MSLNFLDFEQPIAELEAKID... CCCCCCCCHHHHHHHHHHHHHCCH...
1297 ACCA_ECOK1 A1A7M9 Acetyl-coenzyme A ca... MSLNFLDFEQPIAELEAKID... CCCCCCCCHHHHHHHHHHHHHCCH...
1298 ACCA_ECOL5 Q0TLE8 Acetyl-coenzyme A ca... MSLNFLDFEQPIAELEAKID... CCCCCCCCHHHHHHHHHHHHHCCH...
1299 ACCA_ECOL6 Q8FL03 Acetyl-coenzyme A ca... MSLNFLDFEQPIAELEAKID... CCCCCCCCHHHHHHHHHHHHHCCH...
1300 ACCA_ECOLI P0ABD5 Acetyl-coenzyme A ca... MSLNFLDFEQPIAELEAKID... CCCCCCCCHHHHHHHHHHHHHHHH...
1301 ACCA_ECOUT Q1RG04 Acetyl-coenzyme A ca... MSLNFLDFEQPIAELEAKID... CCCCCCCCHHHHHHHHHHHHHHHH...

Fig. 7. Partial result of the searching process for proteins from the Escherichia coli having the given structural pattern
h(5;15),c(3),?(6),c(1;*).

5.3. LOCATING PATTERNS USING SEQUENCEPOSITION

The sequencePosition function allows to locate the specified pattern in the structure of a protein or
group of proteins in a database. Pattern searching is performed with the use of segment table and through
alignment of protein secondary structures. For this purpose, we have adapted the Smith-Waterman
alignment method [18].
The header of the sequencePosition function is as follows:

FUNCTION sequencePosition
(@columnSSeq text,
 @pattern varchar(4000),
 @predicate varchar(4000)
)
RETURNS @resultTable table
(proteinId int,
 startPos int,
 endPos int,
 length int,
 gapsCount int,
 sequence text
)

The sequencePosition takes the following arguments:
− @columnSSeq – database field that contains sequences of SSEs, e.g. secondary,
− @pattern – pattern that defines the query SSEs sequence represented by a set of segments, e.g.:

h(2;10), c(1;5),?(2;*),
− @predicate – an optional, simple or complex criteria that allow to limit the list of proteins that

will be processed during the search, e.g.: name LIKE '%phosphogluconolactonase%',
The sequnecePosition function returns a table containing information about the location of the

query pattern in the structure of the database protein:
− proteinId – unique identifier of protein that contains specified pattern; using the identifier we can

join resultant table with data from other tables,
− startPos – position, where the pattern starts in the target protein from a database,
− endPos – position, where the pattern ends in the target protein from a database,
− length – length of the segment that matches to the given pattern,
− sequence – sequence of SSEs, which matches to the pattern defined in the query.

The sequencePosition function is used in the FROM clause of the SELECT statement. The resultant
table is treated as one of source tables used in query execution. Below, we show an example of using the
function to localize pattern that contains a β-strand of the length from 1 to 10 elements, optional loop up

MEDICAL DATA ANALYSIS

 145

to 5 elements, α-helix of the length at least 5 elements, optional loop up to 5 elements and β-strand of any
length – pattern e(1;10),c(0;5),h(5;*), c(0;5),e(1;*). The pattern is searched only in proteins with the
length exceeding 150 amino acids, which secondary structure was predicted (predicate PE=4).

SELECT p.protAC AS AC, p.name, s.startPos AS start, s.endPos AS end,
sequence

AS [matched sequence], p.secondary
FROM ProteinTbl AS p JOIN sequencePosition('secondary',
 'e(1;10),c(0;5),h(5;*),c(0;5),e(1;*)' , '') AS s
ON p.id = s.proteinId
WHERE p.name LIKE '%PE=4%' AND p.length > 150

The query produces results as shown in Fig. 8. It should be noted that there may be many ways how
the pattern can be aligned to the protein structure from a database. The modified Smith-Waterman method
returns a number of possible alignments based on a value of the internal MPE parameter [21]. As a result,
in the table shown in Fig. 8 the same protein may appear several times with different alignment
parameters.

Predicates that filter the set of rows can be defined in the WHERE clause of the SELECT statement
or can be passed as the @predicate argument of the sequencePosition function.

AC name start end matched sequ ence secondary
-------- ------------------ ----- ---- ------------ ------------------------ -------------------------
P75747 Protein abrB OS... 72 107 eeeeeeeeehhh hhhhhhhhhhhhhhheeeeeeee CCCEEEEEHHHHHHHHHHHHEE...
P75747 Protein abrB OS... 222 245 eeeeehhhhhhh hhhhhhhheee CCCEEEEEHHHHHHHHHHHHEE ...
P75747 Protein abrB OS... 136 158 eeeeehhhhhhh hhhhcceeee CCCEEEEEHHHHHHHHHHHHEE ...
P75747 Protein abrB OS... 172 202 eeeeccccchhh hhhhhhhhhhccceeeee CCCEEEEEHHHHHHHHHHHHEE ...
P75747 Protein abrB OS... 4 32 eeeeehhhhhhh hhhhheeeeeeeeeee CCCEEEEEHHHHHHHHHHHHEE ...
P75747 Protein abrB OS... 22 43 eeeeeeeeeecc hhhhheeee CCCEEEEEHHHHHHHHHHHHEE ...
Q54GC8 Acyl-CoA-bindin... 172 197 eeeeeccchhhh hhhhhcccceeee CCCHHHHHHHHHHHHHHHHCCC ...
P32104 Transcriptional... 185 212 eeeecccchhhh hhhhhhhheeeeeee CCCCCHHHHHHHHHHHHHHHHH ...
P32104 Transcriptional... 120 144 eeeccccchhhh hhhccccceeee CCCCCHHHHHHHHHHHHHHHHH ...
P32104 Transcriptional... 98 123 eeeecccchhhh hhhhhhhhhheee CCCCCHHHHHHHHHHHHHHHHH ...
...

Fig. 8. Partial result of the search process for the given structural pattern e(1;10),c(0;5),h(5;*),c(0;5),e(1;*).

However, regarding the query performance, it is better to pass them directly as the @predicate
argument, when we call the function. This small extension forces the query processor to filter the set of
proteins before creating the resultant table and before executing the Smith-Waterman method. Therefore,
we do not waste time for time-consuming alignments that are not necessary in some cases. Sample query
with filtering criteria specified in the function call, is shown below.

SELECT p.protAC AS AC, p.name, s.startPos AS start, s.endPos AS end, sequence
AS [matched sequence], p.secondary
FROM ProteinTbl AS p JOIN
 sequencePosition('secondary','e(1;10),c(0;5),h(5;*) ,c(0;5),e(1;*)' ,
 ' p.name LIKE ''%PE=4%'' AND p.length > 150') AS s
ON p.id = s.proteinId

6. EFFECTIVENESS AND EFFICIENCY OF PSS-SQL QUERIES

During the development of the PSS-SQL language we tested the effectiveness of the proposed
solution and we have performed a set of tests in order to verify the efficiency of queries containing
different patterns.

The efficacy of the PSS-SQL queries was successfully confirmed by manual comparisons of the
results of containSequence and sequencePosition functions to the SSEs sequences stored in the
ProteinTbl and segments stored in an appropriate segment table. Tests were performed for more than one
hundred different SSE patterns, having different complexity, containing various numbers of segments,
described precisely and rough, including SSEs of different types – defined explicitly or using wildcards.

The efficiency of the PSS-SQL queries was tested on the PC computer with the processor Intel®
3.2 GHz Core Duo and 2GB of memory. The Proteins database, which was used in tests, contained data
describing 6 230 primary and secondary structures of proteins, as well as some additional information.
Primary structures and description of proteins were downloaded from the SwissProt database [19].
Secondary structures were generated in the prediction process with the use of the Predator program [20].

MEDICAL DATA ANALYSIS

 146

The execution time of PSS-SQL queries calling the sequencePosition function, which localizes
patterns in protein structures, takes from single seconds up to several minutes. It depends on the pattern
specified in the query. In Fig. 9a we show execution times for queries containing sample patterns:

− SSE1: h(38),c(3;10),e(25;30),c(3;10),h(1;10),c(1;5),e(5;10)
− SSE2: e(4;20),c(3;10),e(4;20),c(3;10),e(15),c(3;10),e(1;10)
− SSE3: h(30;40),c(1;5),?(50;60),c(5;10),h(29),c(1;5),h(20;25)
− SSE4: h(10;20),c(1;10),h(243),c(1;10),h(5;10),c(1;10),h(10;15)
− SSE5: e(1;10),c(1;5),e(27),h(1;10),e(1;10),c(1;10),e(5;20)

The SSE1 pattern represents protein structures with the alternating α-helices and β-strands joined
by loops. The SSE2 pattern represents protein structure built only with β-strands connected by loops. The
SSE3 pattern consists of undefined segment of SSEs (? - wildcard). Patterns SSE4 and SSE5 have one
unique region – h(243) and e(27), respectively.

We have observed, the execution time tightly depends on the uniqueness of the pattern. The more
unique the pattern, the more proteins are filtered out based on the segment table, the fewer proteins are
aligned by the Smith-Waterman method and the less time we need to obtain results. We can see it clearly
in Fig. 9a for patterns SSE4 and SSE5, having precisely defined, unique regions h(243) and e(27). For
universal patterns, for which we can find many fitting proteins or multiple alignments, we can observe
longer execution times of PSS-SQL queries. In such cases, the length of the pattern influences the
alignment time – for longer patterns we experience longer response times. We have not observed any
dependency between the type of the SSE and the response time. However, specifying wildcards in the
pattern increases the waiting period (sometimes up to several minutes). This is typical for standard SQL
queries in database systems, where execution times are highly dependent on the selectivity of the queries
and the number of data in a database.

Additional filtering criteria, which are commonly used in SQL queries, also decrease the execution
time. In case of the containSequence function, additional filtering criteria can be specified only in the
WHERE clause. In case of the sequencePosition function, they can be placed in the WHERE clause or
passed as the @predicate parameter of the function. However, passing the criteria as parameters is better
for the performance of PSS-SQL queries. The reason of this is the fact that filtering criteria in the
WHERE clause are set on the resultant table of the sequencePosition function after it is constructed and
populated. On the other hand, criteria passed as the @predicate parameter are set before the construction
of the resultant table. In Fig. 9b we present execution times for PSS-SQL queries using the
sequencePosition function searching the structural pattern SSE1: h(38),c(3;10),e(25;30),
c(3;10),h(1;10),c(1;5),e(5;10), with additional filtering predicates defined as the @predicate parameter of
the function (BUILT-IN) and in the WHERE clause:

− predicate P1: p.name like ''%Homo sapiens%'',
− predicate P2: p.name like ''%Homo sapiens%PE=1%'',
− predicate P3: p.name like ''%Homo sapiens%PE=1%SV=4%'',
− predicate P4: p.primary like ''%NHSAAYRVDQGVLN%''.

Additional predicate P1 causes the pattern to be compared only to proteins that act in Homo sapiens
organisms. In the predicate P2 we added the condition that the candidate proteins must have the Protein
existence attribute set to Evidence at protein level (PE=1). In predicate P3 we provided additional filter
for the sequence version SV=4. Finally, predicate P4 sets a simple filter on the primary structure of
proteins (amino acid sequence).

Analyzing the execution times of queries with additional predicates in Fig. 9b (BUILT-IN) and
comparing them to the execution time of the query containing SSE1 pattern in Fig. 9a, we can notice that
appropriately formulated filtering criteria significantly increase the performance of the search process and
reduce the search time from several minutes even to several seconds (P3 and P4). It is also worth noting
that for the analyzed pattern SSE1 we benefit from specifying additional filtering criteria as a parameter
of the sequencePosition function. Specifying additional criteria in the WHERE clause is not so efficient
in this case.

MEDICAL DATA ANALYSIS

 147

a)

SSE1

SSE2

SSE3

SSE4

SSE5

0

20

40

60

80

100

120

pattern

ti
m

e
[s

]

SSE1
SSE2
SSE3
SSE4
SSE5

b)

P1

P1

P2

P2

P3

P3

P4

P4

0

20

40

60

80

100

120

BUILT-IN WHEREpredicate

tim
e

[s
]

Fig. 9. Execution times of PSS-SQL queries: a) containing different patterns SSE1-SSE5, b) containing only the SSE1 pattern and various
filtering predicates P1-P4 passed as a parameter (BUILT-IN) or in the WHERE clause.

7. DISCUSSION AND CONCLUDING REMARKS

PSS-SQL presented in the paper provides ready to use and easy search mechanisms that allow to
find proteins having secondary structure similar to the given pattern. Comparing to existing solutions in
the area (presented in section 2), the PSS-SQL has similar performance for precise patterns and can be
slower for universal patterns, since they require many alignment processes. The reason of the fact is that
PSS-SQL returns many possible solutions for such imprecise patterns. From this point of view, the
execution times seem to be acceptable. Moreover, the syntax of the PSS-SQL is more transparent to users
and more flexible in possibilities of defining query patters. The pattern defined in a query does not have
to be specified strictly. Segments in the pattern can be specified as intervals and they can have undefined
lengths (users can use the wildcard ‘*’ symbol). Additionally, the PSS-SQL allows to specify patterns
with undefined types of the SSE (using the SSE type wildcard ‘?’ symbol) or patterns, where some SSE
segments may occur optionally. Therefore, the search process has an approximate character, regarding
various possible options for segments matching. Furthermore, the possibility to define patterns that
include optional segments, allows users to specify gaps in a particular place.

Integrating methods of protein similarity searching with a database management system makes it
easy to manipulate biological data without the need for external data mining applications. The SQL
extension presented in this paper is an example of such integration. There are many advantages of the
proposed extension.

First, the logic of data processing is removed from the user application and moved towards the
database server. The advanced analysis of biological data is then performed while retrieving data from a
database with the use of PSS-SQL queries. Therefore, the number of data returned to the user and
network traffic between the server and the user application are much reduced.

Second, users familiar with the SQL syntax will easily manage to formulate PSS-SQL queries. We
have designed a simple and understandable SQL extension, and in consequence, a very clear language for
protein structures. This gives an advantage of the PSS-SQL language over other known solutions. How-
ever, there are many implicit operations that hide behind this simplicity and transparency, such as the
alignment using the modified Smith-Waterman method, which belongs to the class of dynamic
programming algorithms.

Third, as a result of PSS-SQL queries, users obtain pre-processed data. These data can then be used
in further processing, e.g. users can treat results as strictly selected proteins, which meet specified criteria
regarding the construction, and will be analyzed in more details. In our research, we use the presented
extension in the similarity searching of protein tertiary structures. In the process, PSS-SQL queries allow
us to roughly preselect proteins on the basis of their secondary structures.

MEDICAL DATA ANALYSIS

 148

BIBLIOGRAPHY

[1] EIDHAMMER I., INGE J., TAYLOR W.R., Protein Bioinformatics: An algorithmic approach to sequence and
structure analysis, John Wiley & Sons, 2004.

[2] ALLEN J.P., Biophysical chemistry, Wiley-Blackwell, 2008.
[3] BRANDEN C., TOOZE J., Introduction to protein structure, Garland, 1991.
[4] DICKERSON, R.E., GEIS, I., The structure and action of proteins, 2nd ed. Benjamin/Cummings, Redwood City,

Calif. Concise, 1981.
[5] CREIGHTON T.E., Proteins: Structures and molecular properties, 2nd ed. Freeman, San Francisco, 1993.
[6] GIBRAT J.F., MADEJ T., BRYANT S.H.: Surprising similarities in structure comparison, Curr Opin Struct Biol,

Vol. 6(3), 1996, pp. 377–385.
[7] SHAPIRO J., BRUTLAG D., FoldMiner and LOCK 2: protein structure comparison and motif discovery on the

web, Nucleic Acids Res., Vol. 32, 2004, pp. 536–41.
[8] CAN T., WANG Y.F., CTSS: a robust and efficient method for protein structure alignment based on local

geometrical and biological features, Proc. 2003 IEEE Bioinformatics Conf., 2003, pp. 169–179.
[9] YANG J., Comprehensive description of protein structures using protein folding shape code, Proteins, Vol. 71(3),

2008, pp. 1497–518.
[10] BERMAN H.M., WESTBROOK J., FENG Z., GILLILAND G., BHAT T.N., WEISSIG H., et al.: The Protein

Data Bank, Nucleic Acids Res., Vol. 28, 2000, pp. 235–242.
[11] DATE C.J., Introduction to database systems, (8th Edition), Addison Wesley, 2003.
[12] STEPHENS S., CHEN J.Y., THOMAS S., ODM BLAST: Sequence homology search in the RDBMS, Bulletin of

the IEEE Computer Society Technical Committee on Data Engineering, 2004.
[13] HAMMEL L., PATEL J.M., Searching on the secondary structure of protein sequences, Proc. 28th Int. Conf. on

Very Large Data Bases, Hong Kong, China, 2002, pp. 634–645.
[14] TATA S., PATEL J.M., FRIEDMAN J.S., SWAROOP A., Declarative querying for biological sequences, Proc.

22nd Int. Conf. on Data Engineering, IEEE Computer Society, 2006, pp. 87–98.
[15] WANG Y., SUNDERRAMAN R., TIAN H., A domain specific data management architecture for protein structure

data, Proc. 28th IEEE EMBS Annual Int. Conf., New York City, USA, 2006, pp. 5751–5754.
[16] MURZIN A.G., BRENNER S.E., HUBBARD T., CHOTHIA C., SCOP: A structural classification of proteins

database for the investigation of sequences and structures, J. Mol. Biol. Vol. 247, 1995, pp. 536–540.
[17] ORENGO C.A., MICHIE A.D., JONES S., et al., CATH – A hierarchic classification of protein domain structures,

Structure, Vol. 5. No 8., 1997, pp. 1093–1108.
[18] SMITH T.F., WATERMAN M.S., Identification of common molecular subsequences, J Mol Biol, Vol. 147, 1981,

pp. 195–197.
[19] APWEILER R., BAIROCH A., WU C.H., BARKER W.C., et al., UniProt: the Universal Protein knowledgebase,

Nucleic Acids Res. Vol. 32 (Database issue), 2004, pp. 115−119.
[20] FRISHMAN D., ARGOS P., Incorporation of non-local interactions in protein secondary structure prediction from

the amino acid sequence, Protein Eng, Vol. 9(2), 1996, pp. 133–142.
[21] WIECZOREK D., MAŁYSIAK-MROZEK B., KOZIELSKI S., MROZEK D., A method for matching sequences

of protein secondary structures, Journal of Medical Informatics & Technologies, October 2010 (to be published).

