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RELIABILITY OF MEDICAL PRODUCTION RULESOBTAINED BY MEANS
OF AGGREGATE DATA MINING

In the paper a method for designing productionsrubih uncertainty from medical aggregate datarégpsed.
Our main goal is to define the parameters that lavimfluence on the reliability of obtained rul#ge distinguish two
factors of reliability: global and internal oneshély determine a rule’s importance in comparisomtteer obtained
rules. Those rules compose the knowledge basentddical Rule-Based System (RBS) aiding medicalraiag and
treatment.

1. INTRODUCTION

Designing knowledge bases of specialized medicd¢-Based Systems (RBSs) is the subject of
our previous [4, 10] and current [5] research. Triitention of RBS is to help medical doctors to make
right diagnostic and therapeutic decisions conogriiverse diseases [6, 9]. These diseases could b
sometimes infrequent and not very well-known todbetors. The knowledge base of RBS will consist of
production rules with uncertainty that can be gatest from medical aggregate data.

In the paper [5] we present the algorithm for desig production rules. In this paper we pay
attention to determining the parameters that havamfduence on the reliability of generated rulésch
production rule with uncertainty is provided witlva factors of reliability. These are: factgrf(r) of
global rule’s reliability, determining the priority of a rule in comparisém other rules from the
knowledge base of RBS, and facid(r) of internal rule’s reliability, corresponding to the conditional
probability of a rule’s conclusion given the cemtadccurrence of its premise&actor irf(r) is a
counterpart of theonfidencefrom association rules [1]. The problem of caltinlg factorgrf(r) is more
complex. This factor depends on a great numbeadmeters, with the following being, in our opinion
the most significant: the rulelgeight exactnesandprecision

A detailed analysis of these parameters, the metfidideir estimation and the way of calculating
factorsgrf(r) andirf(r) used in the exemplary production rules with uraiaety will be the main subject
of the paper.

2. RULES AS THE WAY OF KNOWLEDGE REPRESENTATION

Let F={F,,..., F,} be a set of binary facts and I& ={d,,..., d,} be a set of individuals. Each
individual d; in D can be represented as binary vectyr, {. d}, with dy= 1 if for individual d; fact F,
occurs anddy= O otherwise. LetH,,..., F,} and {F,..., F,;} be disjoint sets of facts frorfr. We will
consider an implication of the form:

[ if Far... By then Fu,.... Fy . 1)

as a rule representing the knowledge that if fpotsnisesF,,..., F, occur then, consequently, facts-
conclusions,,..., F, occur.
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MEDICAL DATA ANALYSIS
2.1.NUMERICAL MEASURE OF ASSOCIATION RULE’ S IMPORTANCE

In the case of an association rule [1], Betorresponds to a set of binary items and Bet
corresponds to a set of transactions. In binaryovda;,...,d.} value di= 1 if transactiory; bought item
Frand valued,= O otherwise. For the given datof transaction we can determisepport of itenF, as a
number of transactions in datthat bought iten,:

sup, (F) = |D (F,)|- )

For each association rulalefined in formula (1), we can determine:
- support of the rule’s premisgas a support of conjunction of items..., F,, it means the number of
transactions in sé?, that bought items,,..., Fy:

sup, (F, O--- OF,) =|D(F, O-- OF,)|, (3)

- support of the ruleas a support of conjunction of items..., F, andr,,..., F,, it means the number of
transactions in s@, that bought items,, ..., Fy, Fy,..., Fy :

sup, (r)=|D(F, 0. OF, OF, O--0OF,)|, 4)
- confidenceof the rule as a proportion of the rule’s support and thepettpof its premises:

conf . (r) = )
o (1) sup, (F, O--- OF,)

We consider the association rule, obtained as aeguence of exploring given detof transactions,
important [2] if the rule’s support is above sommimum supporimin_sup and the rule’s confidence is
above some minimum confidencen_conf

2.2.PRODUCTION RULES WITH UNCERTAINTY

In the case of production rules discussed in [#8]F corresponds to a set of binary attributes and
setD corresponds to a set of patients. In binary veeter... d,} value di= 1 if patientd; possess attribute
Frand valual,= O otherwise.

The productions rules with uncertainty used in ro@dRBSs for automatic reasoning take the
following form:

r: it happens with grf(r):
if Fay..., Fp (6)
then F. with irf(r),

where attributes., ..., F,, stand for the premises of ruleand attribute, —for the uncertain conclusion.
Such rules are additionally provided with two fastdactorgrf(r) of global rule’s reliability, determining
the priority of the rule in comparison to otheresilfrom knowledge base of RBS, and factf{r) of
internal rule’s reliability, corresponding to therdlitional probability of attribute&., given the certain
occurrence of attributes, ..., Fy.

Contrary to association rules, low values of tHaséors do not necessarily reduce production rules’
importance. In the case of the absence of hypathegh high global reliability, even a less relialdne
can be useful (e.g. an initial diagnostic hypothesade by a General Practitioner). Also, a low lle¥e
internal reliability does not decide about the lomportance of the rule as a whole (e.g. a hyposhesi
frequency of negative, adverse effects of treatjndime method of the factogsf(r) andirf(r) estimation
by means of aggregate medical data mining willHgestubject of the following section.
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3. FACTORS OF PRODUCTION RULE’S RELIABILITY

Each production rule with uncertainty is providedhwwo factors of reliability. These are: factor
grf(r) of global rule’s reliability and factorrf(r) of internal rule’s reliability. Now we will try to
determine the parameters that should have, ingiaran, an influence on these factors.

3.1.INTERNAL RULE’S RELIABILITY

We assume that each production rulds designed on the base of tuplgof the given in [5]
reference schema) being the final result of thegrdtion of initial tupler; with attached tuples,,..., T,.
We notice the maximal ‘attribute_count’ of eachléup (fori=1,..., m) asN;, and the ‘attribute_count’ of

a “special” attribute, chosen in the subset-citer+ asL. In tuple T numberN =§Ni stands for the
i=1

‘attribute_count’ of the common attribute (corresgimg to the premises of designing rujeand number

L= iLi — for the *attribute_count’ of the “special” atitite (corresponding to the conclusion of designing
i=1
ruler). Then nternal reliability of ruler can be determined by the formula:

irf (r):ﬁ, (7)

It easy to notice that numbeksandL are the counterparts of the association rule’sonamce
measure respectively: of the support of the rupramises, defined in (3), and of the rule’s support
defined in (4). Moreover, factdrf(r) is the counterpart of the confidence from the eission rule,
defined in (5). Factoirf(r) takes the value from range <0;1> and in statistics the counterpart of the
point estimate of the proportion correspondinghe tonditional probability of the rule’s conclusjon
given the certain occurrence of the rule’s premisgem the point of view of the system’s expert
efficiency, as the important rules we will consitleese rules that are characterized by high (d¢tw4¢ or
low (close to 0) internal reliability rule. HighJel of irf(r) will be characteristic for the standard
hypotheses for which the conclusion is highly pldba(e.g. hypothesis about the consequence of
standard drug admission). However, a low leveirigf) will also decide about high importance of the
hypothesis (e.g. hypothesis about the appearanagvefse effects of the specific pharmacotherdpig.
connected with the fact that the low probabilitytioé event defined in the rule’s conclusion implies
high probability of the opposite one. Consequenfigm the point of view of the system’s expert
efficiency, we will consider these rules unimpottéor which factorirf(r) is close to 0.5 . In these rules,
the occurrence of the event defined in the rul@actusion has almost the same probability as the
opposite one. We will calculateeightof rule using the following formula:

w(r) = max{irf(r), 1-rf(r) }. (8)

From the point of view of the system’s expert efinrcy we will consider important the rules with hig
weight (close to 1). Rule’s weight(r) should have an influence on, defined in followswpsection,
global rule’s reliability.

For factorirf(r) we can estimate 100¢&—a) confidence interval [7]. Parameterdl-known as the
confidence level of the estimation, stands for pnebability of the fact that the confidence intdrva
contains the estimated factor. Since the estimagbers to the proportion, than its confidence rveaé
should be included in interval <0; 1>. The lengtlihis confidence interval calculated using therfala:

Jirf (Q@-irf ()
N ' H

Ilﬂ((r):min{zml1 9)

a
2
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will decide about the accurateness of the inteestimation for this factor [10]. The accuratenets o
interval estimation, identified farther as tie’s exactnessan be determined by the following formula:

e(N=min{l-a, 1-1_,(nN}. (10)

From the point of view of the system’s expert eficy we will consider important the rules with
high exactness (close to 1). It easy to notice rhlais exactness depends on nunmbestanding for the
‘attribute_count’ of the common attribute in tupl€it is bigger if numben is bigger), and on confidence
level 1-a of the interval estimation. The high (close tocbnfidence level suggested in the interval
estimation implies the increasing of the intervé#'sgth. Rule’s exactnesggr) will be the next value that
should have an influence on, defined in followingsection, global rule’s reliability.

3.2.GLOBAL RULE’S RELIBILITY

The problem of calculating global rule’s reliakyjligrf(r) seems to be very complex. As we
mentioned in subsection 2.2, this factor determthespriority of the rule in comparison to othetes
from the knowledge base of RBS [10].
We suggest that in the process of designing pramlucules, the rules in which premises and
conclusion are not fuzzified should be more impartanes. In these rules the attributes correspgniin
the premises and the conclusion do not lose threcigion during the integration. The precision fué t
attribute is often determined by the medicine doptrforming the clinical trials.
Let us now define the parameter of precision of faan ruler defined by (6), for k=a,..., b, c.
This fact corresponds to an attribute in final gneged tupler, being the result of integration of initial
tuple T, with tuplesT,,..., T, (see [5]). Each tuplg (for i =1,..., m) has the maximal ‘attribute_count’ of
the common attributes equal tp For sake of simplicity of the consideration, lst assume that each
attribute corresponding to fa€f in tuple T, has ‘attribute_values’ from countable set of ealy of
cardinality |viJ. In final integrated tupler, setv,, being the set of ‘attribute_value’ of the atttibu
corresponding to fact,, presents
- an union of sety, (fori=1,..., m), in the case of the ‘value_qualifier’ of thisrditite taking the form
of disjunctions or,

- anintersection of setg (fori=1,..., m), in the case of the ‘value_qualifier’ of thisrditite taking the
form of conjunctionoe.

Then we can determin@ecisionof factF, using the following formula:

m N, i .. .
>+ ‘ for the disjunctio
_Ji= N k‘
VFI=1 N | , (11)
>—3X for the conjunctim
i=1 N ik‘

whereN = iNi stands for the ‘attribute_count’ of the commonmiladites in final integrated tupfe The
i=1

precision of the fact takes the value from range 8 and it gets the maximal value 1 if the
corresponding attribute is not fuzzified in nonetloé integrated tuples. During the estimation o$ th
parameter we have to pay attention to the maxiatédibute_count’ of each integrated tuple whichl wil
decide about the power of this tuple’s influencelmprecision of the fact.

Average of the rule’s precisiar(r) for the rule defined by (5) can be calculatedhs/formula:

S V() +V(F,)
v =S

(12)
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This parameter takes values from range (0; 1> atsl the maximal value 1 if none of the attributes —
corresponding to the rule’s conclusion and premisissfuzzified.

And finally, we propose to estimatgobal rule’s reliability grf(r) as the minimal value of the
parameters: rule’s weight(r) defined by (8); rule’s exactnes¢r) defined by (10); and average of the

rule’s precisionv(r) defined by (12):

grf(r) = min{w(r), e(r), v(n}. (13)

This means that we will consider rulas the rule with high global reliability if thisile has, at the
same time, the high weight, exactness and precision

4. EXAMPLES OF DESIGNING PRODUCTION RULES

The following example will illustrate the designindjproduction rules with uncertainty, especially
the method of estimation of the rules’ internal atdbal reliabilities. The data came from a medical
repository, namely the repository of clinical tea&gisters.

4.1. DESIGNING PRODUCTION RULES WITH UNCERTAINTY

All the data we consider, refer to young patierdsgitalized for the bronchial asthma exacerbation
[8]. The data report the results of clinical tri@arried out on three groups of patients. They loan

represented by means of the following tuples:

T, = <General_Diagnosis:{pediatric_asthma}®/17,
Current_Health_state:{acute_asthma_exacerbation}©/17,
Standard_Drug:{short-acting_beta2_agonist}©/17,
Additional_Drug:{inhaled_anticholin_multi_doses}®/17,
co_intervention:{systemic_corticosteroid}©/17,
age_range:{1,..., 7} ®/17,
severity_of_diagn_illness:{mild, moderate}®/17,
symptoms: {coughing}®/17,
treatment_effects:{no_hospital_admission}®/13,
adverse_effects: {vomiting}o/3,

relapse: {next_asthma_exacerbation_in_72_hours}o/1>;

T, = <General_Diagnosis:{pediatric_asthma, diabetes}®/18,
Current_Health_State:{acute_asthma_exacerbation}®/18,
Standard_Drug:{short-acting_beta2_agonist}©®/18,
Additional_Drug:{inhaled_anticholin_multi_doses}®/18,
Co_Intervention:{systemic_corticosteroid}®/18,
age_range:{4,..., 9}&/18,
severity_of_diagn_illness:{moderate}®/18,

symptoms: {coughing, wheezing}®/18,

treatment_effects:{no_hospital_admission, stability_of FEV1}©/18,

adverse_effects: {vomiting}o/2> ;

T3 = <General_Diagnosis:{pediatric_asthma}©/89,
Current_Health_State:{acute_asthma_exacerbation,
asthma_attack }©/89,
Standard_Drug:{short-acting_beta2_agonist}®/89,

Additional_Drug:{inhaled_anticholin_multi_doses}®/89,

T = <General_Diagnosis:{pediatric_asthma}®/124,
Curent_Health_State:{acute_asthma_exacerbation}©/124,
Standard_Drug:{short-acting_beta2_agonist}©/124,
Additional_Drug:{inhaled_anticholin_multi_doses}®/124,
age_range:{1,..., 18}@/124,
severity_of_diagn_illness:{mild, moderate, severe}®/124,
symptoms: {coughing}®124,
treatment_effects:{no_hospital_admission}®/101

adverse_effects: {vomiting}©/10> .

For final integrated tupler and the “special”
attribute: treatment_effects, chosen in the subset-
criterion (a), the following production rule with
uncertainty will be obtained:
I 5 it happens with grf(r) = 0.8
if (pediatric_asthma) and
(acute_asthma_exacerbation) and
(short-acting_beta2_agonist) and
(inhaled_anticholinergic_multi_doses) and
(age_range = {1,..., 18}) and
(severity_of_diagn_illness =
= (mild or moderate or severe)) and
(coughing)
then (no_hospital_admission) with irf(r) = 0.81

For final integrated tupler and the “special”
attribute: adverse_effects, chosen in the subset-
criterion (b), the following production rule with
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co_intervention:{no_corticosteroid}®/89, uncertainty will be obtained:
age_range:{6,..., 18} /89, I'p: it happens with grf(r) = 0.87
severity_of_diagn_illness:{mild, moderate, severe}®/89, if (pediatric_asthma) and

symptoms: {coughing}©/89, (acute_asthma_exacerbation) and

treatment_effects:{no_hospital_admission}®/70> (short-acting_beta2_agonist) and

adverse_effects: {vomiting}o/5>. (inhaled_anticholinergic_multi_doses) and

We assume that; is the initial tuple of the (age_range ={1,..., 18}) and
integration and for this tuple we determine two (severity_of_diagn_illness =
subset-criteria: = (mild or moderate or severe)) and
(a) KO {} O {treatment_effects}, (coughing)
(b) K, O {symptoms} O {adverse_effects}. then  (vomiting) with irf(r) =0.08 .

We can integrate all three tupleg T, andTs, to
both criteria and we obtain the following final
integrated tuple:

Reliability factorsirf(r) andgrf(r), given to these rules were calculated by mean®rofiulas (7) and

(13), under the assumption of confidence intereakl 1-e¢ = 0.95. A method of calculation of these
factors and their detailed analysis will be perfechin the following subsections.

4.2. CALCULATION OF THE RELIABILTY FACTORS USED IN EXEMPRARY
PRODUCTION RULES

Rulesr, andr, presented in subsection 4.1 were generated froat iintegrated tuple. In each
tuple: T,, T, andT; the maximal ‘attribute_count’ of common attributesequal respectively; = 17,N,
= 18,N; = 89 and the ‘attribute_count’ of attributessatment_effects, andadverse_effects chosen in the subset-
criteria (a) and (b) as the “special”’ ones, is égespectivelyl,, = 13,L,, = 18,Ls, = 70 andLy, = 3, Ly =
2, Ly, = 5. In final integrated tuple the maximal ‘attribute_count’ of common attribu{esrresponding
to the rule’s premises) is equak124, and the ‘attribute_count’ of the “speciatridute (corresponding
to the rule’s conclusion) is, in the subset-crder{a), equal, =101 and in the subset-criterion (i),
=10. For each rules, andry, its internal reliability defined by formula (7% equal respectivelyrf(r ;) =
0.81 and irf(rp) = 0.08, and its weight, defined by formula (8)eual respectivelyw(ry) = 0.81 and
w(rp) = 0.92.

Next, for each determined factarf(r,) andirf(r,), we can estimate 95% confidence interval and
calculate its length by formula (9). Then for eadte r, andr, we obtain its exactness, defined by
formula (10), which is equal respectivedfr,) = 0.86 ande(r,) = 0.9.

Let us notice that both rules andr, have the same set of premises. The precisionbaset
premises defined by formula (11) are equal resp&gti v(pediatric_asthma) = 0.93,V(acute_asthma_exacerbation)
= 0.64, V(short—acting_betaz_agonist) =1, V(inhaled_anticholinergic_multi_doses) =1, V(age_range = {1,..., 18}) = 0.62,
V(severity_of_diagn_illness = (mild or moderate or severe)) = 0.86,V(coughing) = 0.93.

Let us also demonstrate the method of calculatiege parameters for two different premises, the
first one (age_range = {1,...,18}) corresponding to the attribuigs_range With the ‘value_qualifier’ taking the

form of disjunctione, and the second onewughing) corresponding to the attributgmptoms with the

‘value_qualifier’ taking the form of conjunction.

For premise, = (age_range = {1....,18}) the set values of the corresponding attrigdeange in tuplesT;,
T, andT; are respectivelyw, ={1,...7}, Va = 4,..,9) and Vs, = f6,...,18} Of the cardinalities equal,|| = 7, V|
=6, Vu| = 13. In final integrated tuple the “updated” set value of the attribuge range IS Vi = {1....,18} Of
the cardinality equaVj| = 18. Then, using formula (11), we can calculate: V(age_range = {1,...,18}) =
17 7,18 6,89 13=062,
12418 12418 124 18

For premiser, = (coughing) the set values of the corresponding attributgoms in tuplesT,, T, andT;
are respectivelyV,, = {coughing}; Vo, = {coughing, wheezing} aNdVs, = {coughing} Of the cardinalities equak}| = 1,
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Val = 2, Va| = 1. In final integrated tuple the set value of the attribug@nptoms is Vi = {coughing} of the
cardinality ¥,| = 1. Then using formula (11), we can calculafeigning) = 17 F,18 1,891 =0.93.
1241 124 2 1241

Both rulesr, and r, differ in their conclusions, and the precision tbese conclusions are equal:
V(no_hospital_admission) = 0.64,V(vomiting) = 1. The average of the precision for rutgsaandry, defined by
formula (12), is equal respectivelyr,) = 0.83 ands(rp) = 0.87.

Finally, global reliability of rules, andry,, defined by formula (13), is equal respectively:
grf(r.) = min{0.81,0.86,0.83} = 0.81 andayrf(r,) = min{0.92,0.9,0.87} = 0.87.

4.3. ANALYSIS OF THE RELIABILTY FACTORS USED IN EXEMPLAR PRODUCTION RULES

Let us notice that, however, in rulesandry, internal reliabilityirf(r p) is much smaller than internal
reliability irf(r 5), global reliabilitygrf(rp) is higher thargrf(r,). This means that in the knowledge base of
RBS with uncertainty, rule, will have the higher priority in comparison to rule In the case of rule,,
the significant parameter for determinatiorgdi(r,) is its weightw(r,), whereas in the case of rulgthe
significant parameter for determinationgf(ry,) is its average precisior(r,). In both cases rulag and
rp, their exactness is high (close to 1) becauseargfel maximal ‘attribute_counl, in final integrated
tupleT.

5. CONCLUSIONS

Designing knowledge bases of specialized medicdé-Based Systems (RBSs), aiding medical
doctors in their everyday practice, while takingeocaf patients and making treatment decision$asstibject
of our research. In the paper we presented theadeth designing production rules that compose the
knowledge base of RBS. We paid attention to deta@ngithe parameters that have an influence on
reliability of generated rules. So far, we havesidered the confidence of the rule, its weight,caxess
and precision as the significant for the rule’satality. Attempts to find other parameters thatkcbhave
an influence on global reliability of the rule wile the subject of our future research.

We consider the possibility of using the proposeethmd for individual patients’ data mining.
Unfortunately, the possibility of gaining accessstah data, despite numerous talks with the mealicin
doctors, is still a big problem. Nevertheless, plossibility of the data coding, by means of stadda
electronic notations, such as HL7 [3] or EHR, tbah guarantee, among others, the full anonymity of
patients, seems to be very hopeful.
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