
JOURNAL OF MEDICAL INFORMATICS & TECHNOLOGIES Vol. 16/2010, ISSN 1642-6037

semantic data integration,
medical rule-based systems, uncertainty

Beata JANKOWSKA1, Magdalena SZYMKOWIAK2

DESIGNING MEDICAL PRODUCTION RULES FROM
SEMANTICALLY INTEGRATED DATA

In the paper an algorithm for automatic knowledge acquisition is proposed. The knowledge is acquired from
aggregate data stored in different repositories. The algorithm operates by means of semantic data integration, allowing
both syntax and semantic differences between data coming from different sources. If only we know data taxonomies,
can interpret data schemas and design schema mappings, then the differences are not an obstacle to integration. The
acquired knowledge is being defined in a form of production rules with uncertainty. The considerations are illustrated
with medical examples.

1. INTRODUCTION

The problem of discovering knowledge that is hidden in evidence has been studied for many years.
The diversity of solutions results from varying character of evidence and also from varying applications
of the knowledge being discovered. The main attributes of evidence are the following ones: consistency
or inconsistency of data stored, their syntactic homogeneity or heterogeneity, and their semantic
uniqueness or ambiguity. Saying of knowledge application, we mean the necessity of designing
knowledge that is certain or uncertain, universal or specific. These attributes influence both a method of
data exploring and also a way of knowledge representation.

In the paper we propose an inductive learning algorithm for exploring such domain data that are
stored in various tuple formats. One of the formats is chosen as a point of reference and all the mappings
between this reference format and the remaining formats must be given. All the data must be based on
similar ontologies (see subsection 3.1), and taxonomical dependencies between domain individuals must
be known. The data can be incomplete (lacking attributes prove ignorance on attributes’ values).

The algorithm is based on using a multisort algebra of domain individuals, with sorts corresponding
to categories of individuals, a partial-order relation of subsumption, and union/ intersection operations
being counterparts of classical operations from the set theory. The relation of subsumption enables
expressing taxonomical dependencies between the sets of individuals; the union and intersection
operations are used as well for defining mappings between different data schemas, as for implementing
the algorithm’s kernel. The algorithm’s performance is illustrated with examples from the domain of
medicine.
Related work. Inductive learning methods received a great deal of attention and were reported in many
papers and surveys. Commonly known algorithms of discovering association rules [1, 2, 18, 6] are based
on using factors of support and confidence - the most popular measures of significance and interest. The
two factors do not occur in the association rules explicitly − they are hidden. Another kind of inductive
learning is being used when designing rough set decision rules from data written in a form of attribute
tables [13, 15]. The decision rules can be generated as certain or approximate ones. However, the level of
uncertainty cannot be exposed, same as in the previous case of association rules. There are different
algorithms of managing incomplete data, i.e. data with missing attribute values, when designing rough set
decision rules [5].

Since early nineties, various data integration techniques have been developed very intensively. The
proposed solutions are based on relational data model and SQL query language [10, 7, 4] or XML data

1 Institute of Control and Information Engineering, Pl. Skłodowskiej-Curie 5, 60-965 Poznań, Poland,
 email: beata.jankowska@put.poznan.pl.
2 Poznan University of Technology, Institute of Mathematics, ul. Piotrowo 3a, 60-965 Poznań, Poland
 email: magdalena.szymkowiak@put.poznan.pl.

MEDICAL DATA ANALYSIS

 96

model and XPath language [3, 12]. While it is true that the goal of such integration is obtaining “full data”
only, yet these data present a valuable source of knowledge.

In the last decade, also ontological sciences developed very rapidly. There are many languages and
many tools, e.g. [11, 17] that help us to correctly categorize or conceptualize domains – to understand the
semantics of individuals, categories and various relations between them. They can be useful for
processing heterogeneous data from the domain.

2. FORMAT OF PRODUCTION RULES

Production rules, used in rule-based systems (RBSs) for automatic reasonings, have a form of
implications with premises and conclusions, and represent theses (classical RBSs) or hypotheses (RBSs
with uncertainty). The knowledge based on experience (e.g. medical knowledge) is usually being
expressed in a form of production rules with uncertainty, that are provided with two visible factors of
reliability. Contrary to association rules, low values of these factors do not necessarily reduce production
rules’ quality. In case of absence of very reliable hypotheses, even a less reliable one can be useful (e.g.
an initial diagnostic hypothesis made by a General Practitioner). Also, a low level of the conclusion’s
reliability does not forejudge a low quality of the rule as a whole (e.g. a hypothesis on frequency of side
effects of treatment). The discussed production rules take the form (2):

 it happens with grf = p3 :
 if P1, ..., Pn (2)
 then C with irf = p4,

where P1, ..., Pn stand for premises, and C – for an uncertain conclusion. The two factors grf and irf are
being calculated by means of probabilistic and statistician methods. They stand for: grf − global rule’s
reliability, determining the priority of the rule in comparison to other rules from the knowledge base of
RBS, irf − internal rule’s reliability, defining probability of the conclusion C given the certain occurrence
of the premises P1, ..., Pn. An actual reliability of the conclusion C is usually calculated from the formula
(3) [9]:

 p = p3 · min {p(P1), . . . , p(Pn)} · p4 (3)

where p(Pi), i = 1, ..., n stands for the probability of occurrence of the premise Pi.

3. DESIGNING PRODUCTION RULES

The most valuable production rules can be obtained neither by book learning nor by knowledge
acquisition from domain experts, but by means of global data mining. We mean here as well individual
data stored in distributed databases as aggregate data stored in special repositories. Considering that the
last data are general in form, we will only show how to design production rules with uncertainty from the
aggregate data from repositories. We will allow heterogeneous data schemas, incompleteness of data
specification, and also dynamic changes of data values. In order to make the whole process automated, we
will put some constraints on the format of data representation.

3.1. FORMAT OF EVIDENCE

We will assume that each data in a repository represents a fact relating to a number of people,
things or events (e.g. fact specifying a result of clinical trials performed for a number of patients). The
number usually varies from 10 to 200. The data inside the repository are homogeneous: they differ neither
in syntax, nor in semantics. All of them are built according to the same tuple schema, determined by one
of domain ontologies. Repositories can differ one from another in tuple schemas used. However, the
following constraint must be fulfilled: all domain ontologies addressed by the schemas must be based on
the same set of domain individuals.

For the needs of our algorithm for designing production rules with uncertainty, we will set some
tuple schema as a reference one. It will comprise a wide range of attributes characterizing people, things

MEDICAL DATA ANALYSIS

 97

or events being the object of the considered data tuples. We will allow each data tuple (in short – tuple) to
be incomplete, i.e. some tuple’s attributes can have their values unknown. The above attributes will be
invisible in specification. Apart from the ’attribute value’, each visible attribute has an additional
’attribute count’ parameter, being an equivalent of aggregating ’count’ operators from query languages.
Besides, in each tuple a nonempty subset of common-key attributes has to be defined. They are the
attributes of primary importance for the tuple. The common-key attributes must be attributes of the whole
group of people, things or events ”caught” in the tuple. The remaining visible attributes belong to a set of
common-not-key ones or to a set of discriminatory ones. All common-key and common-not-key attributes
have their ’attribute count’ parameters identical and maximal in the tuple (N). In discriminatory attributes,
their ’attribute count’ parameters take values from the range <0;N). The discussed tuple format is universal
enough to represent also data of an individual person, thing or event.

Symbolically, a tuple Ti, of a given reference schema S, can be written as (4):

Ti =<A1:v©i1/Ni, ..., Am:v©im/Ni , a1:v©i(m+1)/Ni, ..., an:v©i(m+n)/Ni , b1:v©i(m+n+1)/qi1, ..., bp:v©i(m+n+p)/qip>(4)

where A1, ..., Am, a1, ..., an, b1, ..., bp belong to the set of attributes characteristic of the reference
schema S; A1, ..., Am stand for attributes that are common-key in the tuple Ti; a1, ..., an – for attributes that
are common-not-key in the tuple Ti; b1 , ..., bp – for attributes that are discriminatory in the tuple Ti; v©i1, ...,
v©i(n+m+p) – for ’attribute values’ of all the attributes mentioned above; Ni, qi1, ..., qip – for ’attribute counts’
of the attributes in the tuple Ti. In each pair v©ij, for 1≤j≤n+m+p, v stands for a value set, and © – for so called
’value qualifier’, taking a form of: ⊙ – for a set symbolizing the conjunction of elementary values, and ⊕
– for a set symbolizing the disjunction of elementary values. As it was said before, attributes taking a
value ”any” are not being shown (we mean here: a value set consisting of all elementary values from the
attribute’s domain – in case of the qualifier ⊕, and an empty set – in case of the qualifier ⊙).

Let us remark that, depending on the semantics of tuples, the same attributes can occur in a set of
common ones in some tuples, and in a set of discriminatory ones – in others. For example, let us imagine
an experiment testing the dependency of addictions in adults on environmental and genetic factors. In a
tuple specifying basic experiment’s results, the attribute ’addictions’ would be a discriminatory one. For a
change, in an ”opposite” tuple specifying reasons for the addictions, this attribute would be a common
one.

In case of heterogeneous evidence, all data should be transformed to the chosen reference schema at
the beginning. The transformation should be based on mappings between data schemas [12].

3.2. ALGEBRA OF AGGREGATE DATA

As it was considered in [8], aggregate data and operations performed on these data can be given an
algebraic-taxonomical interpretation. First, each attribute A has its model in a form of the qualified power
set of a domain qVALA = 2VAL

A x {⊕, ⊙ }. For the attribute A, a simple algebra SA can be defined, with a partial
order relation ⊆qA, an operation of union ∪qA, and an operation of intersection ∩qA, being defined on the set
qVALA. The algebra SA is a lattice.

Next, an aggregate data built under a schema S = (A1,…, Am, a1,…, an, b1,…, bp) can be seen as a list of
qualified set values, being subsets of qVALA1, ..., qVALAm, qVALa1, ..., qVALan, qVALb1, ..., qVALbp, with their
countings (an ordered pair (vqA, cA) is being written for simplicity as v©A/cA, as it is in (4)). For the schema
S, an algebra AS = (VALS, ⊆cS, ∪cS, ∩cS), being a product of similar algebras-lattices ScA1, …, ScAm, Sca1, …,
Scan, Scb1, …, Scbp can be defined. The algebra AS is also a lattice.

Let D0 stands for a set of domain data matching the reference schema S. In the light of the above
comments, the data from D0 can be compared, joined or processed in any other way by means of the
partial order relation ⊆cS, and the operations of union ∪cS and intersection ∩cS. As it was shown in [8], the
two operations ∪cS and ∩cS are necessary and sufficient for transforming any data matching a reference
schema Si compatible with S (based on the same set of individuals, but possibly different from S) into its
counterpart from D0. As a consequence, it is finally possible to define an algebra-lattice for the set D of all
data compatible with data from D0. Formally, it has the following form (5):

MEDICAL DATA ANALYSIS

 98

 AD = (D, ⊆cS, ∪cS, ∩cS). (5)

3.3. ALGORITHM FOR DESIGNING PRODUCTION RULES

Now, let us demonstrate how from tuples of a fixed schema we come to production rules with
uncertainty (in case of heterogeneous evidence, the generalized approach should be used – see the
subsection 3.2). In each pass of the algorithm, an appointed initial tuple will be joined with each other
tuple that ”preserves” values of all required attributes from the initial tuple. Among the required attributes
are: a number of ”if” attributes (containing all common-key and some chosen common-not-key attributes)
and one ”then” attribute (being a chosen discriminate or common-not-key attribute). In order to meet this
requirement, all corresponding ’attribute values’ of ”if” and “then” attributes from the initial one and
attached tuples have to be in an appropriate relation ⊆qA (the index A depends on the considered attribute:
not its role, but its name). What is more, for the chosen “then” attribute, in case if the corresponding
attribute from the attached tuple is a discriminate one, the both ’attribute values’ have to be identical, i.e.
an appropriate relation ⊆qA should hold in both directions. The relation ⊆qA holds:
- for sets symbolizing conjunctions of values – if and only if ’attribute value’ from the attached tuple is

a superset of ’attribute value’ from the initial tuple;
- for sets symbolizing disjunctions of values – if and only if it is its subset.

For the remaining common-not-key and discriminate attributes from the initial tuple (the ones not
chosen as ”if” or ”then” attributes), updates of ’attribute values’ are being performed. Such the update
consists in:
- calculating a union of sets by means of an appropriate ∪qA operation – in case if the current tuple’s

attribute is a common-not-key one and the attached tuple’s attribute is a common-key or common-not-
key one, and the both ’attribute values’ symbolize disjunctions of values;

- calculating an intersection of sets by means of an appropriate ∩qA operation – in case if the current
tuple’s attribute is a common-not-key one and the attached tuple’s attribute is a common-key or
common-not-key one, and the both ’attribute values’ symbolize conjunctions of values;

- preserving the ’attribute value’ of the current tuple’s attribute – in case if:
• this attribute is a common-not-key one and the attached tuples’ attribute is a discriminate one,

and their ’attribute values’ are equal;
• this attribute is a discriminate one and the attached tuples’ attribute is a common-not-key one,

and the relation ⊆qA between the two ’attribute values’ holds;
• the both attributes are discriminate ones, and their ’attribute values’ are equal;

- setting a value ”any” to the current tuple’s attribute and, next, removing this attribute from the tuple −
in other cases.

Let us note that, while integrating, initial sharp ’attribute values’ of common-not-key attributes not
chosen as ”if” or ”then” ones are often being fuzzified. As concerns ’attribute counts’ parameters, their
values increase while integrating. The values are calculated by means of the classical sum operator,
applied to corresponding ’attribute counts’ from the initial one and all attached tuples.

A production rule designed from the set of described tuples has a form of an uncertain implication,
with:
- a number of premises, corresponding to the attributes being common-key or common-not-key in the

final, integrated tuple (except the one chosen as ”then” at the beginning, in case it is a common-not-
key attribute in this tuple), and

- one conclusion, corresponding to the attribute chosen as ”then” at the beginning.
The algorithm for designing production rules from a homogeneous data repository T can be

formally defined as follows:

For each tuple Ti from the homogeneous data repository T, with a set of common-key attributes Ki = {Ai1, Ai2, …, Aim}, a set of
common-not-key attributes Ui = {ai1, ai2, …, ain}, and a set of discriminate attributes Si = {bi1, bi2, …, bip}, do the following:
{ for each subset Eij of the set Ui, including the empty and full ones, do the following actions:
 { for any attribute fijk from the set Ui\Eij ∪ Si:

 { Tcurr = Ti;

MEDICAL DATA ANALYSIS

 99

perform an integration Ki−Eij−fijk of the tuple Tcurr with each other tuple Th, having a set of common-key attributes
Kh = {Ah1, Ah2, …, Aht}, a set of common-not-key attributes Uh = {ah1, ah2, …, ahu}, and a set of discriminate attributes
Sh = {bh1, bh2, …, bhv}, and fulfilling the constraints:
1. for each Aik∈Ki, k=1,…, m, it exists d∈<1; t>, such that Aik = Ahd and pres(Ti, Th, Aik) ,
2. for each aik∈Eij, it exists d∈<1; t>, such that aik = Ahd and pres(Ti, Th, aik) or

it exists d∈<1;u>, such that aik = ahd and pres(Ti, Th, aik) ,
3. for the attribute fijk it exists d∈<1;u>, such that fijk = ahd and pres(Ti, Th, fijk) or

it exists d∈<1;v>, such that fijk = bhd and pres(Ti, Th, fijk) and pres(Th, Ti, fijk);
carry it out according to the schema:
Tcurr = integs(Tcurr, Th, Ki∪Eij∪{fijk})};

formulate a production rule rijk= forms(Tcurr, Ki∪Ucurr\fijk, fijk)}},
where Ucurr stands for a set of all visible, common-not-key attributes in the final integrated tuple Tcurr .

Algorithm 1. Designing production rules from data in homogeneous repository.

Let F stand for the set of all attributes used in the tuples from T. The semantics of the function: pres: T×T×F

→ {true, false}, intended for checking if ’attribute values’ are preserved, can be defined as follows:
if v©i and v©h are values of the same attribute A in both tuples Ti and Th, and the relation ⊆qA is appropriate
to describe the attribute A, then it holds (6):

 pres(Ti, Th, A)




=

(6)

The function integs : T×T×2F → T calculates the result of integrating the first tuple with a new one,
under the subset-criterion of “if” and “then” attributes from the first tuple. The function forms: T×2F×F
→ T generates a production rule with uncertainty for: a given integrated tuple, a proper subset of its
attributes, and one additional tuple’s attribute, not belonging to the subset mentioned before. It results in a
full text of the wanted production rule – if it can be designed; an empty string ’ ’ – in the opposite case.
The function forms is based on using an auxiliary function gtext, being a concatenation of varying
numbers of parameters of string or integer types. For lack of place, the functions are not defined in detail.

3.4. EXAMPLES OF DESIGNING PRODUCTION RULES

In order to illustrate the algorithm operation, let us consider a few examples of integrating
homogeneous medical data and, next, generating production rules from the obtained integrated results.
The data come from a medical repository, namely – the repository of CTRs (Clinical Trials Registers),
storing reports of different clinical experiments. Each data represents an aggregate report of one clinical
trial, carried out for verifying a medical hypothesis on a group numbering from 10 to 200 participants. It
has a form of the tuple (4), with attributes specifying guidelines (personal and clinical features of
participants, treatment rules) and results (values of clinically essential outcomes) of the trial. The data in
the repository differ neither in syntax, nor in semantics. All of them are built according to the same tuple
schema. All the data considered in this paper refer to young patients, hospitalized (in different time
periods and different clinics) for the reason of bronchial asthma exacerbation [14].

Table 1. Three exemplary tuples reporting experiments on treating children with asthma exacerbation.
Asterisks (*) point to the attributes assumed as common-key in the particular tuples.

attribute names attribute values − T1 attribute values − T2 attribute values − T3
general_diagnosis
current_health_state
standard_drug
additional_drug
co_intervention
age_range
severity_of_diagn_illness
symptoms
treatment_effects

adverse_effects
relapse

*{pediatric_asthma}⊙ /17
*{acute_asthma_exacerb}⊙ /17
*{short-act_B2_agonist}⊙ /17
*{inhaled_anticholin_md}⊙ /17
 {systemic_corticosteroid}⊙ /17
 {3, …,17}⊕/17
 {mild, moderate}⊕/17
 {coughing}⊙ /17
 {no_hospital_admission}⊙ /16

 {vomiting}⊙ /3
 {next_asthma_exacerb_
 in_72_hours}⊙ /1

*{pediatric_asthma}⊙ /18
*{acute_asthma_attack}⊙ /18
*{short-act_B2_agonist}⊙ /18
*{inhaled_anticholin_md}⊙ /18
*{systemic_corticosteroid}⊙ /18
 {4, …,15}⊕/18
 {moderate}⊕/18
 {coughing, wheezing}⊙ /18
 {no_hospital_admission,
 stability_of FEV1}⊙ /18
 {vomiting}⊙ /4

*{pediatric_asthma}⊙ /89
*{acute_asthma_exacerb}⊙ /89
*{short-act_B2_agonist}⊙ /89
*{inhaled_anticholin_md}⊙ /89
 {no_corticosteroid}⊙ /89
 {1, …,18}⊕/89
 {mild, moderate, severe}⊕/89
 {coughing}⊙ /89
 {no_hospital_admission}⊙ /77

 {vomiting, shivering}⊙ /5

The first data (T1) shown in the Table 1 reports the result of a clinical trial carried out on a group of
17 patients. Let us denote a set of common-key attributes of the tuple T1 by K1, a set of its common-not-
key attributes by U1, and a set of its discriminate attributes by S1. They are as follows:

true, if v©i ⊆qA v©h,

false, in opp. case .

MEDICAL DATA ANALYSIS

 100

K1 = {general_diagnosis, current_health_state, standard_drug, additional_drug},
U1 = {co_intervention, age_range, severity_of_diagn_illness, symptoms},
S1 = {treatment_effects, adverse_effects, relapse}.

Only two from among the listed attributes (age_range, severity_of_diagn_illness) have their values in a
form of value sets symbolizing disjunctions of elements. All the remaining attributes are assigned values
in a form of value sets symbolizing conjunctions of elements.

The next data (T2 and T3) refer to 18–person and 89–person groups of patients, respectively. Let us
try to integrate the initial tuple T1 with the tuples T2 and T3, according to the subset-criterion (the third
parameter of the function integs), in sequence:
(a) C1-a = K1 ∪ {age_range, symptoms} ∪ {adverse_effects};
(b) C1-b = K1 ∪ {co_intervention, severity_of_diagn_illness} ∪ {treatment_effects};
(c) C1-c = K1 ∪ { } ∪ {symptoms}.

It turns out, that in the first two cases (a) and (b), the initial tuple T1 can be integrated with the tuple
T2, but cannot be integrated with the tuple T3. In the both cases, ’attribute values’ of all the ”if” attributes
from the tuple T1 subsume ’attribute values’ of the corresponding attributes from the tuple T2 (fulfilling the
constraints formulated in 1. and 2. points of the proposed algorithm 1. As far as the relation is clear for most
of these attributes (e.g. {3,…,17}⊕ subsumes {4,…,15}⊕, {mild, moderate}⊕ subsumes {moderate}⊕, and
{coughing}⊙ subsumes {coughing, wheezing}⊙), it can be questionable for the common-key attribute
current_health_state. The fact: {acute_asthma_ exacerbation}⊙ subsumes {acute_asthma_attack}⊙ results from the
following taxonomical dependency between the value sets’ elements: acute_asthma_exacerbation ≤

acute_asthma_attack.
Besides, as it is required, in the case (a) – the ’attribute value’ of the chosen ”then” attribute from the

tuple T1 (adverse_effects) is equal to the corresponding ’attribute value’ from the tuple T2 (fulfilling the
constraint formulated in the second clause of 3. point of the algorithm); and, in the case (b) – the ’attribute
value’ of the chosen ”then” attribute from the tuple T1 (treatment_effects) subsumes the corresponding ’attribute
value’ from the tuple T2, {no hospital admission}⊙ subsumes {no_hospital_ admission, stability_of_FEV1}⊙ (fulfilling
the constraint formulated in the first clause of 3. point of the algorithm). The integration of the initial tuple T1
with the tuple T3 under the subset-criterion (a) is impossible both for the sake of not holding the subsumption
between ranges {3,…,17}⊕ and {1,…,18}⊕, being ’attribute values’ of age_range; and for the sake of not holding
equality between the ’attribute value’ {vomiting}⊙ of the chosen ”then” attribute adverse_effects from the tuple T1
and the corresponding ’attribute value’ {vomiting, tremor}⊙ from the tuple T3. In turn, ’attribute values’ of
co_intervention and severity_of diagn_illness stand on the way of integration T1 with T3 under the subset-criterion (b).
As relates to the attribute co_intervention, the individuals systemic_corticosteroid and no_corticosteroid define two
different, mutually exclusive methods of pharmacological treatment. Obviously, they cannot be in the
taxonomical dependency. As a consequence, the required constraint: {systemic corticosteroid}⊙ subsumes {no

corticosteroid}⊙ does not hold.

Table 2. The results of integrating the tuple T1 with the T2 (T1-2), and the tuple T1 with the tuple T2 and T3 (T1-2-3).

attribute names attribute values − T1-2 attribute values − T1-2-3
general_diagnosis
current_health_state
standard_drug
additional_drug
co_intervention
age_range
severity_of_diagn_illness
symptoms
treatment_effects
adverse_effects

*{pediatric_asthma}⊙ /35
*{acute_asthma_exacerb}⊙ /35
*{short-act_B2_agonist}⊙ /35
*{inhaled_anticholin_md}⊙ /35
 {systemic_corticosteroid}⊙ /35
 {3 , …,17}⊕/35
 {mild, moderate}⊕/35
 {coughing}⊙ /35
 {no_hospital_admission}⊙ /34
 {vomiting}⊙ /7

*{pediatric_asthma}⊙ /124
*{acute_asthma_exacerb}⊙ /124
*{short-act_B2_agonist}⊙ /124
*{inhaled_anticholin_md}⊙ /124

 {1 , …,18}⊕/124
 {mild, moderate, severe}⊕/124
 {coughing}⊙ /124
 {no_hospital_admission}⊙ /111

It can be easily proved that, in case if integration is possible, the result of tuple integration does not
depend on the subset-criterion of integration, but only on the form of tuples being integrated. That is why,
in the both cases (a) and (b), we will obtain the same final result of integration T1-2 (Table 2).

After having done a similar attributes’ analysis for the case (c), we come to the conclusion that,
under this subset-criterion, the initial tuple T1 can be integrated with the both tuples T2 and T3, giving the
final result T1-2-3 (Table 2).

Let us shortly summarize the main features of the algorithm presented in the subsection 3.3:

MEDICAL DATA ANALYSIS

 101

- the result of a single integration, being done in one algorithm’s pass, depends strongly on the initial
tuple Ti (that is why, the trials of integrating: the initial tuple T1 with T2 and T3; the initial tuple T2 with
T1 and T3; and the initial tuple T3 with T1 and T2 under the same criterion (a), end with the final
integrated tuples T1-2, T2 and T3, respectively, that are different one from each other);

- the order in which the initial tuple Ti attempts to join with remaining tuples has no influence on the final
result of integration (the final tuples T1-2-3 and T1-3-2 obtained under the criterion (c) would be equal; that is
why, the joining is always being performed in a predetermined order);

- in case if integration of the initial tuple Ti with some other tuples is possible, the final result of this
integration does not depend on the criterion of integration (that is why, the final tuples T1-2 obtained
under the different criterions (a) and (b) are equal);

- for a given set of homogeneous tuples – a great number of integrated results will be obtained; however,
it is not guaranteed that the results will be different one from each other.

Table 3. Production rules obtained from the integrated tuples T1-2 (r1-2,1, r1-2,2), and T1-2-3(r1-2-3,1).

production rule r1-2,1 production rule r1-2,2 production rule r1-2-3,1
it happens with grf = 0.80 :
 if (pediatric_asthma) and
 (acute_asthma_exacerb) and
 (short-act_B2_agonist) and
 (inhaled_anticholin_md) and
 (systemic_corticosteroid) and
 (age_range = [3 ; 17]) and
 (severity_of_diagn_illness =
 (mild or moderate)) and
 (coughing)
 Then (vomiting) with irf=0.20

it happens with grf = 0.89 :
 if (pediatric_asthma) and
 (acute_asthma_exacerb) and
 (short-act_B2_agonist) and
 (inhaled_anticholin_md) and
 (systemic_corticosteroid) and
 (age_range = [3 ; 17]) and
 (severity_of_diagn_illness =
 (mild or moderate)) and
 (coughing)
 then (no_hospital_admission)
 with irf=0.97

it happens with grf = 0.89 :
 if (pediatric_asthma) and
 (acute_asthma_exacerb) and
 (short-act_B2_agonist) and
 (inhaled_anticholin_md) and
 (age_range = [1 ; 18]) and
 (severity_of_diagn_illness =
 (mild or moderate
 or severe)) and
 then (coughing) with irf=0.90

For any final integrated tuple T, we can generate a production rule with uncertainty r = forms(T,P, f),

such that P is a set of all common (optionally except one common-not-key) attributes from the tuple T,
and f is the chosen common-not-key or discriminate attribute from this tuple. For example, for the final
integrated tuple T1-2, the set P1-2 of all its common attributes, and its discriminate attributes f1-2,1 =

adverse_effects and f1-2,2 = treatment_effects − production rules will take forms, respectively r1-2,1 and r1-2,2 (Table
3). Again, for the final integrated tuple T1-2-3, the set P1-2-3,1 of all its common attributes except the attribute
symptoms, being the third argument of the function forms - a production rule will take a form r1-2-3,1 (Table
3). The values of the factors grf and irf have been calculated according to the schema proposed in [16].

4. CONCLUSIONS

From the point of view of the expert system’s efficiency, a knowledge base is the system’s
bottleneck. It is commonly known that experts in the domain are usually unwilling to co-operate with
knowledge engineers. Also, there are objective difficulties in their communicating with one another. The
mentioned problems are serious arguments for appreciating real evidence as the very valuable source of
domain knowledge, that can be explored one way or another.

The presented algorithm for automatic knowledge acquisition from a number of repositories of
aggregate tuples is based on semantic data integration. Allowing syntax and semantic differences between
input tuples, the algorithm can operate on data coming from various sources. This way, it can give
reliable results. After a small adaptation, we could obtain such production rules with uncertainty that
might be ready for use in knowledge bases designed by expert system shells like FuzzyCLIPS or Jess.

The algorithm’s complexity depends polynomially on the number of aggregate tuples in
repositories. Besides, it depends exponentially on the maximum number Amax of not-key attributes

occurring in these tuples. Assuming that this number is not high (at most − about 10), we can regard
Amax2c = as a constant factor of the algorithm’s complexity)O(cn2 .

MEDICAL DATA ANALYSIS

 102

ACKNOWLEDGEMENTS

The research has been partially supported by the Polish Ministry of Science and Higher Education
under grant N516 369536 and by Poznan University of Technology under grants PB 43-070/10 and
BW 45-087/10.

BIBLIOGRAPHY

[1] AGRAWAL R., IMIELINSKI T., SWAMI A., Mining Association Rules Between Sets of Items in Large
Databases, SIGMOD Record 22(2), 1993, pp. 805-810.

[2] AGRAWAL R., SRIKANT R., Fast algorithms for mining association rules in large databases, in: Bocca J.B.,
Jarke M., Zaniolo C. (Eds.), Proc. of the 20th Int. Conference on Very Large Data Bases, Morgan Kaufmann,
Santiago de Chile, 1994, pp. 487-499.

[3] ARENAS M., LIBKIN L., XML Data Exchange: Consistency and Query Answering, in: LI Ch. (Ed.), Proc. of the
24th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, ACM, Baltimore, 2005,
pp.13-24.

[4] CHEN H., Rewriting Queries Using View for RDF/RDFS-Based Relational Data Integration, LNCS 3816, 2005,
pp. 243-254.

[5] GRZYMALA-BUSSE J., GRZYMALA-BUSSE W., An experimental comparison of three rough set approaches
to missing attribute values, Trans. on Rough Sets 6, 2007, pp. 1-47.

[6] HAN J., PEI J., YIN Y., MAO R., Mining frequent patterns without candidate generation, Data Mining and
Knowledge Discovery 8, 2004, pp. 53-87.

[7] HAAS L.M., HERNANDEZ M.A., HO H., POPA L., ROTH M., Clio grows up: from research prototype to
industrial tool, in: Özcan F. (Ed.), Proc. of ACM SIGMOD Conference on Management of Data, ACM, Baltimore,
2005, pp. 805-810.

[8] JANKOWSKA B., On Integrating Medical Data by means of an Algebraic Lattice, in: Informatyczne systemy
zarządzania wiedzą, Akademicka Oficyna Wydawnicza EXIT, (in Polish).

[9] JANKOWSKA, B., SZYMKOWIAK, M.: How to Acquire and Structuralize Knowledge for Medical Rule-Based
Systems?, in: Studies in Computational Intelligence, Kacprzyk J. (ed.), Springer Series, Berlin /Heidelberg, 2008,
pp. 115-130

[10] MILLER R.J. et al., The Clio Project: Managing Heterogeneity, SIGMOD Record 30(1), 2001, pp. 77-83.
[11] OWL Web Ontology Language, http://www.w3.org/TR/2004/REC-owl-features-20040210/, 2010.
[12] PANKOWSKI T., XML data integration in SixP2P - a theoretical framework, in: Doucet A., Gançarski S., Pacitti

E., (Eds.), Proc. of the 2008 Int. Workshop on Data Management in Peer-to-Peer Systems, ACM Series, Nantes,
2008, pp. 11-18.

[13] PAWLAK Z., Rough sets, Int. Journal of Information & Computer Science 11, 1982, pp. 341-356.
[14] PLOTNICK L.H., DUCHARME F.M., Combined inhaled anticholinergics and beta2-agonists for initial treatment

of acute asthma in children, in: The Cochrane Library, 2005.
[15] PREDKI B., SLOWINSKI R., STEFANOWSKI J., SUSMAGA R., WILK Sz., ROSE. Software Implementation

of the Rough Set Theory, LNCS 1424, 1998, pp. 605-608.
[16] SZYMKOWIAK, M., JANKOWSKA, B.: Reliability of Medical Production Rules Obtained by means of

Aggregate Data Mining, submitted to the conf. MIT 2010.
[17] The Protégé Ontology Editor, http://protege.stanford.edu/, 2010.
[18] ZAKI M.J., Scalable algorithms for association mining, IEEE Trans. on Knowledge and Data Engineering 12(3),

2000, pp.372-390.

